Muutke küpsiste eelistusi

E-raamat: Electric and Electronic Circuit Simulation using TINA-TI®

  • Formaat: 456 pages
  • Ilmumisaeg: 22-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000773460
  • Formaat - PDF+DRM
  • Hind: 136,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 456 pages
  • Ilmumisaeg: 22-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000773460

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A circuit simulator is a computer program that permits us to see circuit behavior, i.e. circuit voltages and currents, without making the circuit. Use of a circuit simulator is a cheap, efficient, and safe way to study the behavior of circuits.

The Toolkit for Interactive Network Analysis (TINA®) is a powerful yet affordable SPICE based circuit simulation and PCB design software package for analyzing, designing, and real time testing of analog, digital, VHDL, MCU, and mixed electronic circuits and their PCB layouts. This software was created by DesignSoft. TINA-TI is a spinoff software program that was designed by Texas Instruments (TI®) in cooperation with DesignSoft which incorporates a library of pre-made TI components for the user to utilize in their designs.

This book shows how a circuit can be analyzed in the TINA-TI® environment. Students of engineering (for instance, electrical, biomedical, mechatronics, and robotics to name a few), engineers who work in the industry, and anyone who wants to learn the art of circuit simulation with TINA-TI can benefit from this book.
Preface xi
List of Tables
xiii
1 Simulation of Electric Circuits with TINA-TI®
1(210)
1.1 Introduction
1(1)
1.2 Installation of TINA-TI
1(6)
1.3 Version of Software
7(1)
1.4 Example 1: Simple Resistive Voltage Divider
7(27)
1.5 Example 2: Volt Meter and Ampere Meter Blocks
34(5)
1.6 Example 3: Open Circuit and Current Arrow Blocks
39(2)
1.7 Example 4: RLC Circuit with Non-zero Initial Condition
41(21)
1.8 Example 5: Exporting the Obtained Waveforms as a Graphical File
62(1)
1.9 Example 6: Exporting the Obtained Waveforms as Text File
63(3)
1.10 Example 7: RLC Circuit with Zero Initial Condition
66(6)
1.11 Example 8: Initial Condition Blocks
72(4)
1.12 Example 9: Importing the TINA-TI Analysis Result into MATLAB®
76(8)
1.13 Example 10: Measurement of Phase Difference
84(5)
1.14 Example 11: Power Meter Block
89(4)
1.15 Example 12: Drawing the Instantaneous Power Waveform (I)
93(6)
1.16 Example 13: Drawing the Instantaneous Power Waveform (II)
99(15)
1.17 Example 14: Ohm Meter block (I)
114(3)
1.18 Example 15: Ohm Meter Block (II)
117(4)
1.19 Example 16: Thevenin Equivalent Circuit
121(8)
1.20 Example 17: Measurement of Thevenin Resistance
129(2)
1.21 Example 18: Current Controlled Voltage Source
131(3)
1.22 Example 19: Voltage Controlled Current Sources Block
134(4)
1.23 Example 20: Switch Block
138(5)
1.24 Example 21: Three Phase Source
143(2)
1.25 Example 22: Jumper Block
145(6)
1.26 Example 23: Coupled Inductors
151(8)
1.27 Example 24: Transformer
159(6)
1.28 Example 25: Unit Impulse Response of Electric Circuits
165(5)
1.29 Example 26: Unit Step Response of Circuits
170(4)
1.30 Example 27: Frequency Response of Electric Circuits (I)
174(6)
1.31 Example 28: Frequency Response of Electric Circuits (II)
180(5)
1.32 Example 29: Input Impedance of Electric Circuits
185(4)
1.33 Example 30: Drawing the Input Impedance of Electric Circuits
189(3)
1.34 Example 31: Phasor Analysis
192(5)
1.35 Example 32: Parameter Sweep Analysis
197(10)
1.36 Exercises
207(4)
References
210(1)
2 Simulation of Electronic Circuits with TINA-TI®
211(228)
2.1 Introduction
211(1)
2.2 Example 1: Half Wave Rectifier
211(5)
2.3 Example 2: Measurement of Average and RMS Values of Waveforms
216(6)
2.4 Example 3: Harmonic Content of Waveforms
222(6)
2.5 Example 4: Fourier Analysis
228(3)
2.6 Example 5: Converting a Waveform into Sound
231(1)
2.7 Example 6: DC Transfer Characteristics (I)
231(3)
2.8 Example 7: DC Transfer Characteristics (II)
234(3)
2.9 Example 8: DC Transfer Characteristics (III)
237(3)
2.10 Example 9: Temperature Analysis
240(4)
2.11 Example 10: Addition of SPICE Models to TINA-TI®
244(6)
2.12 Example 11: Switching Behavior of Diodes
250(7)
2.13 Example 12: Small Signal AC Resistance of Diodes
257(5)
2.14 Example 13: Full Wave Rectifier (I)
262(10)
2.15 Example 14: Full Wave Rectifier (II)
272(12)
2.16 Example 15: Controlled Rectifier
284(21)
2.17 Example 16: Measurement of Operating Point of Common Emitter Amplifier
305(8)
2.18 Example 17: Measurement of Voltage Gain for Common Emitter Amplifier
313(4)
2.19 Example 18: Total Harmonic Distortion (THD) of Common Emitter
317(5)
2.20 Example 19: THD of Common Emitter Amplifier (II)
322(3)
2.21 Example 20: Frequency Response of Common Emitter Amplifier (I)
325(7)
2.22 Example 21: Frequency Response of Common Emitter Amplifier (II)
332(4)
2.23 Example 22: Input Impedance of Common Emitter Amplifier
336(15)
2.24 Example 23: Output Impedance of Common Emitter Amplifier
351(1)
2.25 Example 24: Measurement of Input/Output Impedance with Ohm Meter Block
352(3)
2.26 Example 25: Modeling a Custom Bipolar Transistor
355(2)
2.27 Example 26: Modeling a Custom Field Effect Transistor
357(1)
2.28 Example 27: Generating the List of Circuit Components
358(1)
2.29 Example 28: Non Inverting op amp Amplifier
359(12)
2.30 Example 29: Stability of op amp Amplifiers
371(11)
2.31 Example 30: Measurement of DC Operating Point
382(4)
2.32 Example 31: Measurement of Common Mode Rejection Ratio (CMRR)
386(11)
2.33 Example 32: Astable Oscillator
397(6)
2.34 Example 33: Buck Converter
403(14)
2.35 Example 34: Operating Mode of Converter
417(5)
2.36 Example 35: Generating a Pulse with Desired Duty Cycle
422(14)
2.37 Exercises
436(3)
References
439(1)
Index 439(2)
About the Author 441
Farzin Asadi has a BSc in Electronics Engineering, MSc in Control Engineering, and PhD in Mechatronics Engineering. Currently, he is with the Department of Electrical and Electronics Engineering at Maltepe University, Istanbul, Turkey. Dr. Asadi has published more than 40 international papers and 15 books. He is also on the editorial board of 7 scientific journals. His research interests include switching converters, control theory, robust control of power electronics converters, and robotics.