Muutke küpsiste eelistusi

E-raamat: Electric and Plug-In Hybrid Vehicles: Advanced Simulation Methodologies

  • Formaat: PDF+DRM
  • Sari: Green Energy and Technology
  • Ilmumisaeg: 12-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319186399
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Green Energy and Technology
  • Ilmumisaeg: 12-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319186399

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain is analyzed and output results presented through the use of specific automotive industrial software (AVL Cruise , IPG CarMaker, AVL Concerto). This methodology of electric and hybrid powertrain design serves to broaden understanding of how the energy flow, efficiency, range and consumption of these vehicles can be adjusted, updated and predicted via development processes.

1 Principles of Modeling and Simulation Processes 1(8)
References
7(2)
2 Mathematics Behind the Models 9(194)
2.1 Vehicle (V)
9(19)
2.1.1 Properties
9(3)
2.1.2 User-Defined Variables
12(8)
2.1.3 Input and Output Variables
20(1)
2.1.4 Computation of the Module Variables
20(1)
2.1.5 Equation System
21(7)
2.2 Clutch (C)
28(5)
2.2.1 Properties
29(1)
2.2.2 User-Defined Variables
30(1)
2.2.3 Input and Output Variables
31(1)
2.2.4 Computation Variables
32(1)
2.2.5 Equation System
32(1)
2.3 Torque Converter (T)
33(7)
2.3.1 Properties
34(1)
2.3.2 User-Defined Variables
35(2)
2.3.3 Input and Output Variables
37(1)
2.3.4 Computation Variables
38(1)
2.3.5 Equation System
39(1)
2.4 Gearbox (G)
40(9)
2.4.1 Properties
41(3)
2.4.2 User-Defined Variables
44(2)
2.4.3 Input and Output Variables
46(1)
2.4.4 Computation Variables
47(1)
2.4.5 Equation System
47(2)
2.5 CVT-Continuously Variable Transmission (H)
49(10)
2.5.1 Properties
50(3)
2.5.2 User-Defined Variables
53(3)
2.5.3 Input and Output Variables
56(1)
2.5.4 Computation Variables
57(1)
2.5.5 Equation System
57(2)
2.6 Single Ratio Transmission (D)
59(7)
2.6.1 Properties
59(3)
2.6.2 User-Defined Variables
62(2)
2.6.3 Input and Output Variables
64(1)
2.6.4 Computation Variables
64(1)
2.6.5 Equation System
65(1)
2.7 Differential (N)
66(4)
2.7.1 Properties
67(1)
2.7.2 User-Defined Variables
67(2)
2.7.3 Input and Output Variables
69(1)
2.7.4 Computation Variables
69(1)
2.7.5 Equation System
70(1)
2.8 Planetary Gearbox (PG)
70(3)
2.8.1 Properties
71(1)
2.8.2 User-Defined Variables
71(1)
2.8.3 Input and Output Variables
72(1)
2.8.4 Equation System
73(1)
2.9 Internal Combustion Engine (E)
73(43)
2.9.1 Properties
74(9)
2.9.2 User-Defined Variables
83(12)
2.9.3 Input and Output Variables
95(1)
2.9.4 Computation Variables
96(1)
2.9.5 Equation System
97(2)
2.9.6 Power Correction on Environment Conditions
99(3)
2.9.7 Charger Response Behavior
102(1)
2.9.8 Temperature Models
103(3)
2.9.9 Consumption Models
106(8)
2.9.10 Fuel Shut-Off
114(2)
2.10 Generator (L)
116(6)
2.10.1 Properties
117(1)
2.10.2 User-Defined Variables
117(2)
2.10.3 Input and Output Variables
119(1)
2.10.4 Computation Variables
120(1)
2.10.5 Equation System
120(2)
2.11 Electrical Consumer (X)
122(3)
2.11.1 Properties
123(1)
2.11.2 User-Defined Variables
123(1)
2.11.3 Input and Output Variables
124(1)
2.11.4 Computation Variables
125(1)
2.11.5 Equation System
125(1)
2.12 Electric Motor (J)
125(6)
2.12.1 Properties
126(1)
2.12.2 User-Defined Variables
126(2)
2.12.3 Input and Output Variables
128(1)
2.12.4 Computation Variables
129(1)
2.12.5 Equation System
129(2)
2.13 Electric Machine (EM)
131(9)
2.13.1 Properties
132(1)
2.13.2 User-Defined Variables
133(2)
2.13.3 Input and Output Variables
135(1)
2.13.4 Computation Variables
136(1)
2.13.5 Equation System
137(3)
2.14 Battery H (QH)
140(1)
2.14.1 Properties
140(8)
2.14.2 User-Defined Variables
141(4)
2.14.3 Input and Output Variables
145(1)
2.14.4 Computation Variables
146(1)
2.14.5 Equation System
147(1)
2.15 Gearbox Control (0)
148(5)
2.15.1 Properties
148(2)
2.15.2 User-Defined Variables
150(1)
2.15.3 Input and Output Variables
151(1)
2.15.4 Computation Variables
151(1)
2.15.5 Equation System
151(2)
2.16 Gearbox Program (P)
153(9)
2.16.1 Properties
153(1)
2.16.2 User-Defined Variables
154(7)
2.16.3 Input and Output Variables
161(1)
2.16.4 Computation Variables
162(1)
2.16.5 Equation System
162(1)
2.17 CVT Control (H)
162(3)
2.17.1 Properties
162(1)
2.17.2 User-Defined Variables
163(1)
2.17.3 Input and Output Variables
164(1)
2.18 Anti-Slip Control (ASC)
165(2)
2.18.1 Properties
165(1)
2.18.2 User-Defined Variables
165(1)
2.18.3 Input and Output Variables
166(1)
2.19 PID Control (PID)
167(3)
2.19.1 Properties
167(1)
2.19.2 User-Defined Variables
168(1)
2.19.3 Input and Output Variables
169(1)
2.19.4 Equation System
169(1)
2.20 Brake (B)
170(3)
2.20.1 Properties
170(1)
2.20.2 User-Defined Variables
171(1)
2.20.3 Input and Output Variables
172(1)
2.21 Cockpit (CO)
173(3)
2.21.1 Properties
173(1)
2.21.2 User-Defined Variables
174(1)
2.21.3 Input and Output Variables
175(1)
2.22 Exhaust System (EX)
176(3)
2.22.1 Properties
176(1)
2.22.2 User-Defined Variables
177(1)
2.22.3 Input and Output Variables
178(1)
2.22.4 Computation Variables
179(1)
2.22.5 Equation System
179(1)
2.23 MATLAB®/SimulinkTM (ml)
179(1)
2.23.1 Properties
179(1)
2.23.2 User-Defined Variables
180(1)
2.23.3 Input and Output Variables
180(1)
2.24 Function (FU)
180(5)
2.24.1 Properties
181(1)
2.24.2 User-Defined Variables
181(2)
2.24.3 Input and Output Variables
183(1)
2.24.4 Equation System
183(2)
2.25 Constants (CN)
185(1)
2.25.1 Properties
185(1)
2.25.2 User-Defined Variables
185(1)
2.25.3 Input and Output Variables
185(1)
2.26 Monitor
186(1)
2.26.1 Properties
186(1)
2.26.2 Input and Output Variables
186(1)
2.27 Wheel/Tire (W)
186(14)
2.27.1 Properties
187(2)
2.27.2 User-Defined Variables
189(5)
2.27.3 Input and Output Variables
194(1)
2.27.4 Computation Variables
194(1)
2.27.5 Equation System
195(5)
References
200(3)
3 Virtual Powertrain Design 203(20)
References
221(2)
4 Classical Powertrain Configuration Model and Simulation 223(66)
4.1 Classical Vehicle Model
223(54)
4.1.1 Classic CVT Model
223(27)
4.1.2 Automatic FWD Model
250(27)
4.2 Run Simulation
277(10)
4.2.1 Result Manager
277(5)
4.2.2 Standard Diagrams
282(5)
References
287(2)
5 Hybrid Powertrain Configuration Model and Simulation 289(98)
5.1 Hybrid Vehicle Model Creation
289(52)
5.1.1 Hybrid CVT Model
289(31)
5.1.2 Hybrid Planetary Gearbox Model
320(21)
5.2 Run Simulation
341(44)
5.2.1 Result Manager
341(5)
5.2.2 Standard Diagrams
346(39)
References
385(2)
6 Electric Powertrain Configuration Model and Simulation 387(76)
6.1 Electric Vehicle Model Creation
387(37)
6.1.1 Electric FWD Model
387(10)
6.1.2 Electric FWD RE Model
397(27)
6.2 Run Simulation
424(38)
6.2.1 Result Manager
424(6)
6.2.2 Standard Diagrams
430(32)
References
462(1)
7 Creating Virtual Road Infrastructure 463(14)
7.1 AVL Road Importer
463(13)
7.1.1 Getting Started
463(1)
7.1.2 Data Submenu
464(1)
7.1.3 Road Submenu
465(5)
7.1.4 Plot Submenu
470(3)
7.1.5 Export Submenu
473(3)
7.1.6 Going Online
476(1)
Reference
476(1)
8 Loop Powertrain Simulation 477
8.1 IPG CarMaker
477(30)
8.1.1 Virtual Vehicle Environment
477(2)
8.1.2 CarMaker Main GUI
479(19)
8.1.3 CarMaker Main Parameters
498(6)
8.1.4 Start Simulation
504(3)
8.2 CRUISE-CarMaker Co-Simulation
507(13)
8.2.1 General Settings
507(2)
8.2.2 CRUISE-CarMaker Interfaces
509(4)
8.2.3 Model for Co-Simulation
513(7)
8.3 Running the Simulation for Electric Model
520(4)
References
524
Bogdan Ovidiu Varga is currently Associate Professor at the Automotive and Transport Department, Faculty of Mechanics, Technical University of Cluj-Napoca, Romania and is coordinator of the Alternative Propulsion Systems course. He received his PhD in mechanical engineering at Technical University of Cluj-Napoca after studying in Germany (University of Hohenheim), Italy (Università di Bologna) and Greece (National Technical University of Athens). Since 2011, he has been Technical Juridical Expert for the Romanian Ministry of Justice in the field of Automotive and Equipment for Vehicles Control and from 2013 an associate member of Federation International des Experts en Automobile. He also activates as editor in Automotive Engineering and Transportation Science & Technology domains for Central European Journal of Engineering and as reviewer for several mainstream scientific journals. He has published several papers in the peer-review journals including Energy Journal from Elsevier.

Florin Mariasiu is currently Associate Professor at the Automotive and Transport Department, Faculty of Mechanics, Technical University of Cluj-Napoca, Romania. With relevant activities and research interest are in the impact of renewable sources use in transportation, the effects of emergent and future technologies and related effects on environment, dependence between traffic intensity and pollutant emissions, scenarios of economic and social effects caused by increasing use of renewable sources, consumers attitude and perception of renewable sources and bio-technologies used in economy. He activate also as editor of Energy & Fuels domain for Central European Journal of Engineering and as reviewer for several mainstream scientific journals.

Dan Moldovanu is currently Senior Lecturer at the Automotive and Transport Department, Faculty of Mechanics, Technical University of Cluj-Napoca, Romania. He is a PhD inMechanical Engineering, since 2011, after studying for his PhD also in Graz, Austria at AVL List GmbH (Specialized in AVL FIRE). He graduated the Faculty of Mechanics, Mechatronics Department, in 2008. He also had a specialization in MATLAB®, Simulink®, at the Technical University of Duisburg-Essen, Germany (2003).

Calin Iclodean is currently Senior Lecturer at the Automotive and Transport Department, Faculty of Mechanics, Technical University of Cluj-Napoca, Romania. He is a PhD in Mechanical Engineering, since 2013, after studying for his PhD also in Graz, Austria at AVL List GmbH (AVL BOOST and AVL CRUISE specialization). He graduated the Faculty of Electronics and Telecommunications, Department of Applied Electronics of the Technical University of Cluj-Napoca, in 1994, has 20 years of working and business experience in IT&C.