Muutke küpsiste eelistusi

E-raamat: Electrical Connectors: Design, Manufacture, Test, and Selection

Edited by (University of Maryland, USA; Seoul National University of Seoul, South Korea), Edited by (University of Maryland, USA; University of Wisconsin at Madison, USA)
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 15-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119679806
  • Formaat - PDF+DRM
  • Hind: 141,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 15-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119679806

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Discover the foundations and nuances of electrical connectors in this comprehensive and insightful resource 

Electrical Connectors: Design, Manufacture, Test, and Selection delivers a comprehensive discussion of electrical connectors, from the components and materials that comprise them to their classifications and underwater, power, and high-speed signal applications. Accomplished engineer and author Michael G. Pecht offers readers a thorough explanation of the key performance and reliability concerns and trade-offs involved in electrical connector selection.

Readers, both at introductory and advanced levels, will discover the latest industry standards for performance, reliability, and safety assurance. The book discusses everything a student or practicing engineer might require to design, manufacture, or select a connector for any targeted application. The science of contact physics, contact finishes, housing materials, and the full connector assembly process are all discussed at length, as are test methods, performance, and guidelines for various applications.

Electrical Connectors covers a wide variety of other relevant and current topics, like:

  • A comprehensive description of all electrical connectors, including their materials, components, applications, and classifications
  • A discussion of the design and manufacture of all parts of a connector
  • Application-specific criteria for contact resistance, signal quality, and temperature rise
  • An examination of key suppliers, materials used, and the different types of data provided
  • A presentation of guidelines for end-users involved in connector selection and design

Perfect for connector manufacturers who select, design, and assemble connectors for their products or the end users who concern themselves with operational reliability of the system in which they’re installed, Electrical Connectors also belongs on the bookshelves of students learning the basics of electrical contacts and those who seek a general reference with best-practice advice on how to choose and test connectors for targeted applications.

 

About the Editors xiii
List of Contributors xv
Preface xvii
1 What Is an Electrical Connector? 1(16)
Michael G. Pecht
San Kyeong
1.1 Challenges of Separable Connectors
1(1)
1.2 Components of a Connector
2(4)
1.2.1 Contact Springs
2(1)
1.2.2 Contact Finishes
3(1)
1.2.2.1 Noble Metal Contact Finishes
4(1)
1.2.2.2 Non-noble Metal Contact Finishes
4(1)
1.2.3 Connector Housing
4(1)
1.2.4 Contact Interface
5(1)
1.3 Connector Types
6(5)
1.3.1 Board-to-Board Connectors
7(1)
1.3.2 Wire/Cable-to-Wire/Cable Connectors
8(2)
1.3.3 Wire/Cable-to-Board Connectors
10(1)
1.4 Connector Terminology
11(3)
References
14(3)
2 Connector Housing 17(14)
Michael G. Pecht
2.1 Mechanical Properties
17(2)
2.2 Electrical Properties
19(2)
2.3 Flammability
21(1)
2.4 Temperature Rating
22(1)
2.5 Housing Materials
23(7)
2.5.1 Thermoplastic Polymers
25(2)
2.5.1.1 Polyesters
25(1)
2.5.1.2 Polyimides, Polyamide-imides, and Polyetherimides
26(1)
2.5.1.3 Polyphenylene Sulfides
26(1)
2.5.1.4 Polyether Ether Ketones
26(1)
2.5.1.5 Liquid-Crystalline Polymers
27(1)
2.5.1.6 Comparison of Thermoplastic Polymers
27(1)
2.5.2 Thermosetting Polymers
27(2)
2.5.3 Additives to Housing Materials
29(1)
2.5.4 Manufacturing of Housing Materials
29(1)
References
30(1)
3 Contact Spring 31(12)
Michael G. Pecht
3.1 Copper Alloys
31(6)
3.1.1 Unified Number System (UNS)
31(2)
3.1.2 Properties of Copper Alloys
33(4)
3.2 Nickel Alloys
37(1)
3.3 Conductive Elastomers
37(1)
3.4 Contact Manufacturing
38(3)
References
41(2)
4 Contact Plating 43(24)
Michael G. Pecht
4.1 Noble Metal Plating
43(4)
4.1.1 Gold
44(2)
4.1.2 Palladium
46(1)
4.1.3 Combination of Gold and Palladium
47(1)
4.2 Non-noble Metal Plating
47(12)
4.2.1 Silver
48(7)
4.2.1.1 Characteristics of Silver as a Contact Finish
49(1)
4.2.1.2 Potential Tarnish-Accelerating Factors
50(3)
4.2.1.3 Use of Silver in Typical Connectors
53(1)
4.2.1.4 Managing Silver Corrosion
54(1)
4.2.2 Silver-Palladium Alloys
55(1)
4.2.3 Nanocrystalline Silver Alloys
55(2)
4.2.4 Silver-Bismuth Alloys
57(1)
4.2.5 Tin
57(2)
4.2.6 Nickel Contact Finishes
59(1)
4.3 Underplating
59(1)
4.4 Plating Process
60(3)
4.4.1 Electrolytic Plating
61(1)
4.4.1.1 Rack Plating
61(1)
4.4.1.2 Barrel Plating
61(1)
4.4.2 Electroless Plating
62(1)
4.4.3 Cladding
63(1)
4.4.4 Hot Dipping
63(1)
References
63(4)
5 Insertion and Extraction Forces 67(8)
Michael G. Pecht
5.1 Insertion and Extraction Forces
67(3)
5.2 Contact Retention
70(1)
5.3 Contact Force and Deflection
70(1)
5.4 Contact Wipe
71(2)
References
73(2)
6 Contact interface 75(14)
Michael G. Pecht
San Kyeong
6.1 Constriction Resistance
76(1)
6.2 Contact Resistance
77(2)
6.3 Other Factors Affecting Contact Resistance
79(2)
6.4 Current Rating
81(1)
6.5 Capacitance and Inductance
82(4)
6.6 Bandpass and Bandwidth
86(1)
References
87(2)
7 The Back-End Connection 89(14)
Chien-Ming Huang
San Kyeong
Michael G. Pecht
7.1 Soldered Connection
89(4)
7.2 Press-Fit Connection
93(2)
7.3 Crimping Connection
95(3)
7.4 Insulation Displacement Connection
98(1)
References
98(5)
8 Loads and Failure Mechanisms 103(44)
San Kyeong
Lovlesh Kaushik
Michael G. Pecht
8.1 Environmental Loads
104(5)
8.1.1 Temperature
104(1)
8.1.2 Vibration Load
105(1)
8.1.3 Humidity
106(1)
8.1.4 Contamination
107(1)
8.1.5 Differential Pressure
108(1)
8.2 Failure Mechanisms in Electrical Connectors
109(28)
8.2.1 Silver Migration
110(4)
8.2.2 Tin Whiskers
114(5)
8.2.3 Corrosion Failure
119(5)
8.2.3.1 Dry Corrosion
119(1)
8.2.3.2 Galvanic Corrosion
120(1)
8.2.3.3 Pore Corrosion
121(1)
8.2.3.4 Creep Corrosion
121(2)
8.2.3.5 Fretting Corrosion
123(1)
8.2.4 Arc Formation
124(4)
8.2.5 Creep Failure
128(3)
8.2.6 Wear
131(5)
8.2.6.1 Adhesive Wear
132(1)
8.2.6.2 Abrasive Wear
133(1)
8.2.6.3 Fatigue Wear
134(1)
8.2.6.4 Corrosive Wear
134(1)
8.2.6.5 Fretting Wear
135(1)
8.2.7 Frictional Polymerization
136(1)
8.3 Case Study by NASA: Electrical Connectors for Spacecraft
137(2)
References
139(8)
9 Fretting in Connectors 147(26)
Deepak Bondre
Michael G. Pecht
9.1 Mechanisms of Fretting Failure
149(18)
9.1.1 Material Factors That Affect Fretting
152(6)
9.1.1.1 Contact Materials
152(3)
9.1.1.2 Hardness
155(1)
9.1.1.3 Surface Finish
155(1)
9.1.1.4 Frictional Polymerization
156(1)
9.1.1.5 Grain Size
156(1)
9.1.1.6 Oxides
157(1)
9.1.1.7 Coefficient of Friction
158(1)
9.1.1.8 Electrochemical Factor
158(1)
9.1.2 Operating Factors That Affect Fretting
158(5)
9.1.2.1 Contact Load
158(1)
9.1.2.2 Fretting Frequency
159(3)
9.1.2.3 Slip Amplitude
162(1)
9.1.2.4 Electric Current
162(1)
9.1.3 Environmental Factors That Affect Fretting
163(4)
9.1.3.1 Humidity
164(1)
9.1.3.2 Temperature
164(1)
9.1.3.3 Dust
165(2)
9.2 Reducing the Damage of Fretting
167(3)
9.2.1 Lubrication
168(1)
9.2.2 Improvement in Design
168(1)
9.2.3 Coatings
169(1)
References
170(3)
10 Testing 173(24)
Bhanu Sood
Michael G. Pecht
10.1 Dielectric Withstanding Voltage Testing
173(1)
10.2 Insulation Resistance Testing
174(2)
10.3 Contact Resistance Testing
176(3)
10.4 Current Rating
179(1)
10.5 Electromagnetic Interference and Electromagnetic Compatibility Testing
180(1)
10.6 Temperature Life Testing
181(1)
10.7 Thermal Cycling Testing
182(1)
10.8 Thermal Shock Testing
182(1)
10.9 Steady-State Humidity Testing
183(1)
10.10 Temperature Cycling with Humidity Testing
184(1)
10.11 Corrosion
184(4)
10.11.1 Dry Corrosion
185(1)
10.11.2 Creep Corrosion
186(1)
10.11.3 Moist Corrosion
187(1)
10.11.4 Fretting Corrosion
187(1)
10.12 Mixed Flowing Gas Testing
188(4)
10.12.1 Battelle Labs MFG Test Methods
189(1)
10.12.2 EIA MFG Test Methods: EIA 364-TP65A
190(1)
10.12.3 IEC MFG Test Methods: IEC 68-2-60 Part 2
190(1)
10.12.4 Telcordia MFG Test Methods: Telcordia GR-63-CORE Section 5.5
191(1)
10.12.5 IBM MFG Test Methods: G1(T)
191(1)
10.12.6 CALCE MFG Chamber Capability
192(1)
10.13 Vibration
192(2)
10.13.1 Mechanical Shock
193(1)
10.13.2 Mating Durability
193(1)
10.14 Highly Accelerated Life Testing
194(1)
10.15 Environmental Stress Screening
194(1)
References
195(2)
11 Supplier Selection 197(10)
Michael H. Azarian
Diganta Das
Michael G. Pecht
11.1 Connector Reliability
197(1)
11.2 Capability Maturity Models
198(1)
11.3 Key Reliability Practices
198(5)
11.3.1 Reliability Requirements and Planning
199(1)
11.3.2 Training and Development
200(1)
11.3.3 Reliability Analysis
200(1)
11.3.4 Reliability Testing
201(1)
11.3.5 Supply-Chain Management
201(1)
11.3.6 Failure Data Tracking and Analysis
202(1)
11.3.7 Verification and Validation
202(1)
11.3.8 Reliability Improvement
203(1)
11.4 Reliability Capability of an Organization
203(1)
11.5 The Evaluation Process
204(1)
References
205(2)
12 Selecting the Right Connector 207(44)
Ilknur Baylakoglu
San Kyeong
12.1 Connector Requirements Based on Design and Targeted Application
207(1)
12.2 Mating Cycles
208(1)
12.3 Current and Power Ratings
209(3)
12.4 Environmental Conditions
212(1)
12.5 Termination Types
213(1)
12.6 Materials
213(4)
12.6.1 Connector Housing Materials
216(1)
12.6.2 Connector Spring Materials
217(1)
12.7 Contact Finishes
217(1)
12.8 Reliability
218(1)
12.9 Raw Cables and Assemblies
219(1)
12.10 Supplier Reliability Capability Maturity
219(1)
12.11 Connector Selection Team
220(1)
12.12 Selection of Candidate Parts from a Preferred Parts Database
221(1)
12.13 Electronic Product Manufacturers' Parts Databases
221(2)
12.14 Parts Procurement
223(1)
12.15 Parts Availability
223(1)
12.16 High-Speed Connector Selection
224(1)
12.17 NASA Connector Selection
224(3)
12.18 Harsh Environment Connector Selection
227(2)
12.19 Fiber-Optic Interconnect Requirements by Market
229(1)
12.20 High-Power Subsea Connector Selection
229(3)
12.20.1 Undersea Connector Reliability
231(1)
12.21 Screening Tests
232(4)
12.22 Low-Voltage Automotive Single- and Multiple-Pole Connector Validation
236(1)
12.23 Failure Modes, Mechanisms, and Effects Analysis for Connectors
236(6)
12.24 Connector Experiments
242(4)
12.25 Summary
246(1)
References
246(5)
13 Signal Connector Selection 251(10)
Michael G. Pecht
13.1 Issues Involving High-Speed Connectors
251(1)
13.2 Signal Transmission Quality Considerations
252(1)
13.2.1 Interconnect Delays
252(1)
13.2.2 Signal Distortion
252(1)
13.3 Electromagnetic Compatibility
253(1)
13.4 Virtual Prototyping
254(5)
13.4.1 TDR Impedance Measurements
255(27)
13.4.1.1 Reflection Coefficient
255(1)
13.4.1.2 TDR Resolution Factors
256(1)
13.4.1.3 TDR Accuracy Factors
257(2)
13.5 Vector Network Analyzer
259(1)
13.6 Simulation Program with Integrated Circuit Emphasis (SPICE)
259(1)
References
260(1)
14 Advanced Technology Attachment Connectors 261(14)
Neda Shafiei
Kyle LoGiudice
Michael G. Pecht
14.1 ATA Connector and SATA Connector Overview
261(2)
14.2 History of ATA and SATA
263(1)
14.3 Physical Description of ATA Connectors, ATA Alternative Connectors, and SATA Connectors
264(4)
14.4 ATA Standardization and Revisions
268(2)
14.5 SATA Standardization and Revisions
270(2)
14.6 SATA in the Future
272(1)
References
273(2)
15 Power Connectors 275(14)
Michael G. Pecht
San Kyeong
15.1 Requirements for Power Connectors
275(1)
15.2 Power Connector Materials
276(1)
15.3 Types of Power Connectors
277(3)
15.4 Power Contact Resistance
280(2)
15.5 Continuous, Transient, and Overload Current Capacities
282(2)
15.5.1 Continuous Current Capacity
282(1)
15.5.2 Transient Current Capacity
283(1)
15.5.3 Overload Current Capacity
284(1)
15.6 Current Rating Method
284(2)
References
286(3)
16 Electrical Connectors for Underwater Applications 289(24)
Flore Remouit
Jens Engstrom
Pablo Ruiz-Minguela
16.1 Background and Terminology
290(2)
16.1.1 History
291(1)
16.1.2 Terminology
291(1)
16.2 Commercial Off-the-Shelf (COTS) Connectors
292(4)
16.2.1 Rubber-Molded
292(1)
16.2.2 Rigid-Shell or Bulkhead Assemblies
293(1)
16.2.3 Fluid-Filled Underwater Mateable
294(1)
16.2.4 Inductive Coupling
295(1)
16.2.5 Assemblies (Non-unmateable)
295(1)
16.3 Connector Design
296(6)
16.3.1 Thermal Design
296(1)
16.3.2 Electrical Properties
297(2)
16.3.3 Mechanical Properties
299(1)
16.3.4 Material Choices
300(1)
16.3.5 Specifications for Underwater Connectors
301(1)
16.4 Connector Deployment and Operation
302(3)
16.4.1 Connection Procedure
302(1)
16.4.2 Connection Layout
303(2)
16.4.3 Reliability
305(1)
16.5 Discussion and Conclusion
305(1)
References
306(7)
17 Examples of Connectors 313(18)
Lei Su
Xiaonan Yu
San Kyeong
Michael G. Pecht
17.1 Amphenol ICC M-Series™ 56 Connectors
313(1)
17.2 Amphenol ICC Paladin® Connectors
313(1)
17.3 Amphenol ICC 3000W EnergyEdge™ X-treme Card Edge Series
314(1)
17.4 Amphenol ICC FLTStack Connectors
314(1)
17.5 Amphenol ICC HSBridge Connector System
315(1)
17.6 Amphenol ICC MUSBR Series USB 3.0 Type-A Connectors
315(1)
17.7 Amphenol ICC Waterproof USB Type-C™ Connectors
316(1)
17.8 Amphenol ICC NETBridge™ Connectors
316(1)
17.9 Amphenol Sine Systems DuraMate™ AHDP Circular Connectors
317(1)
17.10 Amphenol Aerospace MIL-DTL-38999 Series III Connectors
318(1)
17.11 Fischer Connectors UltiMate™ Series Connectors
318(1)
17.12 Hirose Electric DF50 Series Connectors
319(1)
17.13 Hirose Electric microSD™ Card Connectors
320(1)
17.14 Molex SAS-3 and U.2 (SFF-8639) Backplane Connectors
320(1)
17.15 Molex NeoPress™ Mezzanine Connectors
321(1)
17.16 Molex Impel™ Plus Backplane Connectors
321(1)
17.17 Molex EXTreme Guardian™ Power Connectors
322(1)
17.18 Molex Imperium™ High Voltage/High Current Connectors
323(1)
17.19 TE Connectivity Free Height Connectors
323(1)
17.20 TE Connectivity STRADA Whisper Connectors
323(1)
17.21 TE Connectivity MULTI-BEAM High-Density (HD) Connectors
324(1)
17.22 TE Connectivity HDMI™ Connectors
325(1)
17.23 TE Connectivity AMP CT Connector Series
325(1)
17.24 TE Connectivity Micro Motor Connectors
326(1)
17.25 TE Connectivity AMPSEAL Connectors
326(1)
17.26 TE Connectivity M12 X-Code Connectors
327(1)
17.27 TE Connectivity SOLARLOK 2.0 Connectors
327(1)
17.28 TE Connectivity Busbar Connectors
328(1)
References
329(2)
Appendix Standards 331(16)
A.1 Standard References for Quality Management and Assurance
332(1)
A.2 General Specifications for Connectors
332(1)
A.3 Safety-Related Standards and Specifications
332(1)
A.4 Standard References for Connector Manufacturing
333(1)
A.5 Standard References for Socket Material Property Characterization
334(1)
A.6 Standard References for Socket Performance Qualification
335(1)
A.7 Standard References for Socket Reliability Qualification
336(2)
A.8 Other Standards and Specifications
338(1)
A.9 Telcordia
338(1)
A.10 Society of Cable Telecommunications Engineers (SCTE)
339(1)
A.11 Electronic Industries Alliance/Telecommunications Industry Association (EIA/TIA)
339(1)
A.12 International Electrotechnical Commission (IEC)
340(1)
A.12.1 IEC Standards
341(1)
A.12.2 IEC Connectors
341(1)
A.13 Military Standards (MIL-STD)
341(1)
A.14 Standards for Space-Grade Connectors
342(3)
References
345(2)
Index 347
SAN KYEONG is a staff engineer at the R&D headquarters of Samsung Electro-Mechanics Company, currently working as a Research Scientist with the Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, USA. He received a BE degree and PhD in chemical and biological engineering from the Seoul National University of Seoul, South Korea, in 2010 and 2016, respectively. He has expertise in material engineering for passive electronic components.

MICHAEL G. PECHT, PHD, is Chair Professor and Director of the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland, USA. He received his PhD in Engineering Mechanics from the University of Wisconsin at Madison, USA. He is an IEEE, ASME, SAE, and IMAPS Fellow.