Muutke küpsiste eelistusi

E-raamat: Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions

  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Mar-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119755098
  • Formaat - PDF+DRM
  • Hind: 249,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Mar-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119755098

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Electrical and electronic engineering is changing daily, and books like this one, aimed primarily at the professional market, but also useable by the educational market, are important for keeping professionals and students alike up to date on recent advances and trends. It is also useful as a reference. The increasing demand for electronic devices for private and industrial purposes lead designers and researchers to explore new electronic devices and circuits that can perform several tasks efficiently with low IC area and low power consumption. In addition, the increasing demand for portable devices intensifies the call from industry to design sensor elements, an efficient storage cell, and large capacity memory elements. Several industry-related issueshave also forced a redesign of basic electronic components for certain specific applications. The researchers, designers, and students working in the area of electronic devices, circuits, and materials sometimes need standard examples with certain specifications. This breakthrough work presents this knowledge of standard electronic device and circuit design analysis, including advanced technologies and materials. This outstanding new volume presents the basic concepts and fundamentals behind devices, circuits, and systems. It is a valuable reference for the veteran engineer and a learning tool for the student, the practicing engineer, or an engineer from another field crossing over into electrical engineering. It is a must-have for any library."--

The increasing demand for electronic devices for private and industrial purposes lead designers and researchers to explore new electronic devices and circuits that can perform several tasks efficiently with low IC area and low power consumption. In addition, the increasing demand for portable devices intensifies the call from industry to design sensor elements, an efficient storage cell, and large capacity memory elements. Several industry-related issues have also forced a redesign of basic electronic components for certain specific applications. The researchers, designers, and students working in the area of electronic devices, circuits, and materials sometimesneed standard examples with certain specifications. This breakthrough work presents this knowledge of standard electronic device and circuit design analysis, including advanced technologies and materials.

This outstanding new volume presents the basic concepts and fundamentals behind devices, circuits, and systems. It is a valuable reference for the veteran engineer and a learning tool for the student, the practicing engineer, or an engineer from another field crossing over into electrical engineering.  It is a must-have for any library.

Preface xvii
Part I Design and Analysis 1(298)
1 Strain Engineering in Modern Field Effect Transistors
3(16)
Kunal Sinha
1.1 Introduction
3(1)
1.2 Theory of Strain Technology
4(5)
1.2.1 Stress and Strain
4(2)
1.2.2 Stress Matrix for Biaxial and Uniaxial Stress
6(2)
1.2.3 Impact of Strain on MOSFET Parameters
8(1)
1.3 Simulation Studies in Strain Technology
9(3)
1.4 Experimental Studies on Strain Technology
12(2)
1.5 Summary and Future Scope
14(1)
Future Scope
15(1)
Acknowledgement
15(1)
References
15(4)
2 Design and Optimization of Heterostructure Double Gate Tunneling Field Effect Transistor for Ultra Low Power Circuit and System
19(18)
Guenifi Naima
Shiromani Balmukund Rahi
2.1 Introduction
19(1)
2.2 Fundamental of Device Physics
20(1)
2.2.1 Basic Working Principles of TFET
20(1)
2.2.2 Kane's Model
21(1)
2.3 Analysis Approach and Device Parameters
21(2)
2.4 Switching Behavior of TFET
23(1)
2.5 Results and Discussion
24(10)
2.6 Conclusion
34(1)
Acknowledgement
35(1)
References
35(2)
3 Polymer Electrolytes: Development and Supercapacitor Application
37(30)
Anil Arya
Anurag Gaur
A.L. Sharma
3.1 Introduction
37(10)
3.1.1 The Basic Principle and Types of Supercapacitors
38(2)
3.1.2 Key Characteristics of the Electrolyte
40(3)
3.1.3 Polymer Electrolytes and Types
43(3)
3.1.4 Modification Strategies for Polymer Electrolytes
46(1)
3.2 Preparation and Characterization Techniques
47(4)
3.3 Latest Developments
51(11)
3.4 Summary
62(1)
References
62(5)
4 Tunable RF/Microwave Filter with Fractal DGS
67(16)
Mehul Thakkar
Pravin R. Prajapati
Hitesh Shah
4.1 Introduction
67(3)
4.2 Literature Review
70(1)
4.2.1 Planar Reconfigurable Filters
70(1)
4.3 Proposed Work
71(9)
4.3.1 Design of Hairpin Bandpass Filter
71(1)
4.3.2 Design of Hairpin Bandpass Filter with Fractal DGS
72(4)
4.3.3 Design of Tunable Hairpin Bandpass Filter with Fractal DGS
76(4)
4.4 Conclusion
80(1)
Acknowledgement
80(1)
References
80(3)
5 GaN High Electron Mobility Transistor Device Technology for RF and High-Power Applications
83(18)
A.B. Khan
5.1 Introduction
83(2)
5.2 HEMT Structures
85(3)
5.2.1 GaAs-Based HEMTs
85(1)
5.2.2 InP-Based HEMTs
85(1)
5.2.3 GaN-Based HEMTs
86(2)
5.3 Polarization Impact and Creation of 2DEG in GaN HEMT
88(4)
5.3.1 Polarization Effect
88(2)
5.3.2 Formation of 2DEG
90(2)
5.4 GaN-Based HEMT Performance Affecting Factors
92(3)
5.4.1 Surface Passivation
92(1)
5.4.2 Parasitic Effects
93(1)
5.4.3 Field Plate Engineering Technique
94(1)
5.4.4 Impact of Barrier Layer
95(1)
5.5 Conclusion
95(1)
References
96(5)
6 Design and Analyses of a Food Protein Sensing System Based on Memristive Properties
101(18)
Rupam Goswami
Arighna Deb
Rithik Dilip Rathi
Prateek Mahajan
6.1 Introduction
101(2)
6.2 Background
103(2)
6.2.1 Principle of a Memristor
103(1)
6.2.2 Bio-Memristors
103(1)
6.2.3 Applications of Memristors
104(1)
6.3 Motivation
105(1)
6.4 Experimental Set-Up
105(1)
6.5 Experimental Methodology and Preliminary Validation
106(2)
6.5.1 Experimental Methodology
106(1)
6.5.1.1 Food Items
106(1)
6.5.1.2 Reading Voltage and Current Values
107(1)
6.5.2 Preliminary Validation
107(1)
6.6 Sensitivity Parameters
108(2)
6.6.1 Resistance-Based Sensitivity (Sr)
108(1)
6.6.2 Point Slope-Based Sensitivity (Sm)
108(1)
6.6.3 Hysteresis-Line Slope Sensitivity
109(1)
6.7 Results and Discussion
110(4)
6.7.1 Category I: Egg Albumin and Milk
110(3)
6.7.2 Category II: Protein Blend
113(1)
6.8 Conclusions and Prospects
114(1)
References
115(4)
7 Design of Low-Power DRAM Cell Using Advanced FET Architectures
119(14)
A. Durgesh
Suman Lata Tripathi
7.1 Introduction
119(1)
7.2 1T-DRAM (MOS)
120(3)
7.3 1T-DRAM (CNT-FET)
123(1)
7.4 1T-DRAM (FinFET)
124(4)
7.5 1-T DRAM (TFET)
128(2)
7.6 Conclusion
130(1)
References
131(2)
8 Application of Microwave Radiation in Determination of Quality Sensing of Agricultural Products
133(22)
Ravika Vijay
Nidhi Bhargava
K.S. Sharma
8.1 Microwave Heating and its Applications to Agricultural Products
133(4)
8.1.1 Principle of Microwave Heating
133(2)
8.1.2 Moisture Sensing
135(1)
8.1.3 Promoting Germination
136(1)
8.1.4 Food Processing
136(1)
8.1.5 Weeds, Insects and Pests Control
136(1)
8.1.6 Product Conditioning
136(1)
8.1.7 Microwave Drying
137(1)
8.1.8 Quality Sensing in Fruits and Vegetables
137(1)
8.2 Measurement Techniques
137(3)
8.2.1 Open-Ended Coaxial Probe - Network Analyzer Technique
138(1)
8.2.2 Network Analyzer
139(1)
8.3 Dielectric Spectroscopy of Agricultural Products at Different Temperatures
140(8)
8.4 Correlation of Dielectric Properties with Nutrients
148(3)
8.5 Conclusion
151(1)
References
151(4)
9 Solar Cell
155(14)
Arvind Dhingra
Introduction
155(1)
9.1 History of Solar Cell
155(3)
9.2 Constructional Features of Solar Cell
158(1)
9.3 Criteria for Materials to Be Used in Manufacturing of Solar Cell
158(1)
9.4 Types of Solar Cells
159(1)
9.5 Process of Making Crystals for Solar Cell Manufacturing
160(1)
9.6 Glass
161(1)
9.7 Cell Combinations
161(3)
9.7.1 Series Combination of Solar Cells
161(1)
9.7.2 Parallel Combination of Solar Cells
162(1)
9.7.3 Series-Parallel Combination of Solar Cells
163(1)
9.8 Solar Panels
164(1)
9.9 Working of Solar Cell
165(1)
9.10 Solar Cell Efficiency
166(1)
9.11 Uses/Applications of Solar Cells
166(1)
Conclusion
167(1)
References
167(2)
10 Fabrication of Copper Indium Gallium Diselenide (Cu(In,Ga)Se2) Thin Film Solar Cell
169(20)
Jaymin Ray
Keyur Patel
Gopal Bhatt
Priya Suryavanshi
C.J. Panchal
10.1 Introduction
169(1)
10.2 Device Structure of CIGS Thin Film Solar Cell
170(1)
10.3 Fabrication and Characterization of GIGS Thin Film Solar Cell
171(15)
10.3.1 Effect of Thermally Evaporated CdS Film Thickness on the Operation of GIGS Solar Cell
174(1)
10.3.2 Effect of Heat Soaks on CIGS/CdS Hetero-Junction
175(1)
10.3.3 Effect of Flash Evaporated CdS Film Thickness on the Performance of GIGS Solar Cell
176(3)
10.3.4 Effect of i-ZnO Film Thickness on the Performance of CIGS Solar Cell
179(7)
10.4 Conclusion
186(1)
References
186(3)
11 Parameter Estimation of Solar Cells: A Multi-Objective Approach
189(22)
Saumyadip Hazra
Souvik Ganguli
11.1 Introduction
189(2)
11.2 Problem Statement
191(5)
11.2.1 SDM
192(2)
11.2.2 DDM
194(2)
11.3 Methodology
196(1)
11.4 Results and Discussions
197(11)
11.4.1 Results for the Single-Diode Model
198(5)
11.4.2 Results for Double-Diode Model
203(5)
11.5 Conclusions
208(1)
References
209(2)
12 An IoT-Based Smart Monitoring Scheme for Solar PV Applications
211(24)
Senthil Kumar Ramu
Gerald Christopher Raj Irudayaraj
Rajarajan Elango
12.1 Introduction
211(2)
12.2 Solar PV Systems
213(7)
12.2.1 Solar Photovoltaic (PV) Systems
213(1)
12.2.1.1 Stand-Alone PV Modules
214(1)
12.2.1.2 Grid-Connected PV Systems
214(1)
12.2.2 Concentrates Solar Power (CSP)
214(1)
12.2.3 Solar Water Heater Systems
215(1)
12.2.4 Passive Solar Design
216(1)
12.2.5 Solar Microgrid System
216(1)
12.2.5.1 PV Module
217(1)
12.2.6 Battery
217(1)
12.2.6.1 Flooded Lead Acid Battery
218(1)
12.2.6.2 VRLA Battery
219(1)
12.2.6.3 Lithium-Ion Battery
219(1)
12.2.7 MPPT
219(1)
12.2.8 Inverters & Other Electronic Equipment
219(1)
12.2.9 Charge Controller
220(1)
12.2.10 Additional Systems Equipment
220(1)
12.3 IoT
220(8)
12.3.1 Artificial Intelligence (AI) and Machine Learning
221(1)
12.3.1.1 Hardware
221(1)
12.3.1.2 Middleware
221(1)
12.3.1.3 Cloud
221(1)
12.3.2 Big Data and Cloud Computing
221(1)
12.3.3 Smart Sensors
221(1)
12.3.3.1 Temperature Sensor
221(1)
12.3.3.2 Humidity Sensor
222(1)
12.3.3.3 Tilt Sensor
223(1)
12.3.3.4 CO2 Sensor
223(1)
12.3.3.5 Voltage and Current Sensor
223(1)
12.3.3.6 Light Sensor
223(1)
12.3.3.7 MEMS (Micro Electro Mechanical Systems) Sensor
223(1)
12.3.3.8 Ultrasonic Sensor
223(1)
12.3.3.9 IR Sensor
224(1)
12.3.3.10 Proximity Sensor
224(1)
12.3.4 Additional Devices for Control and Communication
224(1)
12.3.4.1 Arduino
224(1)
12.3.4.2 Raspberry Pi
224(1)
12.3.4.3 GSM Module
225(1)
12.3.5 Renewable Energy and IoT in Energy Sector
225(1)
12.3.6 Application of IoT
226(1)
12.3.6.1 Application to Renewable Energy Systems
226(1)
12.3.6.2 Application to Grid Management
227(1)
12.4 Remote Monitoring Methods of Solar PV System
228(2)
12.4.1 Wireless Monitoring
228(1)
12.4.2 Physical/Wired Monitoring
228(1)
12.4.3 SCADA Monitoring
228(1)
12.4.4 Monitoring Using Cloud Computing
228(1)
12.4.5 Monitoring Using IOT
228(1)
12.4.5.1 IoT-Based Remote Monitoring
229(1)
12.5 Challenges and Issues of Implementation of IoT on Renewable Energy Resources
230(1)
12.5.1 Challenges
230(1)
12.5.2 Solutions
231(1)
12.6 Conclusion
231(1)
References
231(4)
13 Design of Low-Power Energy Harvesting System for Biomedical Devices
235(16)
R. Seyezhai
S. Maheswari
13.1 Introduction
235(1)
13.2 Investigation on Topologies of DC-DC Converter
236(10)
13.2.1 Hybrid Source Architecture Based on Synchronous Boost Converter
236(1)
13.2.2 Hybrid Source Architecture Using Single-Inductor Dual-Input Single-Output Converter
237(2)
13.2.3 Hybrid Source Architecture Employing a Multi-Input DC Chopper
239(7)
13.3 Hardware Results
246(1)
13.4 Conclusion
247(1)
References
247(4)
14 Performance Analysis of Some New Hybrid Metaheuristic Algorithms for High-Dimensional Optimization Problems
251(34)
Souvik Ganguli
Gagandeep Kaur
Prasanta Sarkar
14.1 Introduction
251(2)
14.2 An Overview of Proposed Hybrid Methodologies
253(3)
14.3 Experimental Results and Discussion
256(26)
14.4 Conclusions
282(1)
References
283(2)
15 Investigation of Structural, Optical and Wettability Properties of Cadmium Sulphide Thin Films Synthesized by Environment Friendly SILAR Technique
285(14)
Sampat G. Deshmukh
Rohan S. Deshmukh
Vipul Kheraj
15.1 Introduction
285(1)
15.2 Experimental Details
286(2)
15.3 Results and Discussion
288(8)
15.3.1 Film Formation Mechanism
288(1)
15.3.2 Thickness Measurement
289(1)
15.3.3 Structural Studies
289(3)
15.3.4 Raman Spectroscopy
292(1)
15.3.5 Scanning Electron Microscopy
293(1)
15.3.6 Optical Studies
294(1)
15.3.7 Wettability Studies
295(1)
15.4 Conclusion
296(1)
15.5 Acknowledgement
296(1)
References
296(3)
Part II Design, Implementation and Applications 299(256)
16 Solar Photovoltaic Cells
301(14)
V. Mohanapriya
V. Manimegalai
16.1 Introduction
301(1)
16.2 Need for Solar Cells
302(1)
16.3 Structure of Solar Cell
302(1)
16.4 Solar Cell Classification
303(2)
16.4.1 First-Generation Solar Cells
303(1)
16.4.2 Second-Generation Solar Cells
304(1)
16.4.3 Third-Generation Solar Cells
304(1)
16.5 Solar PV Cells
305(1)
16.6 Solar Cell Working
306(1)
16.7 Mathematical Modelling of Solar Cell
306(3)
16.8 Solar Cell Connection Methods
309(2)
16.9 Types of Solar PV System
311(2)
16.10 Conclusion
313(1)
References
313(2)
17 An Intelligent Computing Technique for Parameter Extraction of Different Photovoltaic (PV) Models
315(26)
Shilpy Goyal
Parag Nijhawan
Souvik Ganguli
17.1 Introduction
315(2)
17.2 Problem Formulation
317(5)
17.2.1 Single-Diode Model
317(2)
17.2.2 Double-Diode Model
319(1)
17.2.3 Three-Diode Model
320(2)
17.3 Proposed Optimization Technique
322(2)
17.3.1 Various Phases of Optimization of Harris Hawks
323(1)
17.3.1.1 Exploration Phase
323(1)
17.3.1.2 Turning from Global to Local Search
324(1)
17.3.1.3 Exploitation Phase
324(1)
17.4 Results and Discussions
324(15)
17.5 Conclusions
339(1)
References
339(2)
18 Experimental Investigation on Wi-Fi Signal Loss by Scattering Property of Duranta Plant Leaves
341(10)
Khalid Ali Khan
Syed Gulraze Anjum
M. Nasim Faruque
Dinkisa Dechasa Geyesa
18.1 Introduction
341(2)
18.1.1 Duranta Golden Plant
342(1)
18.1.2 Foliage Loss
343(1)
18.2 Measurement and Calculation
343(4)
18.2.1 Scattering Feasibility
346(1)
18.2.2 Comparison with Tree Shadowing Effect
347(1)
18.3 Result and Discussion
347(1)
18.4 Conclusions
348(1)
References
348(3)
19 Multi-Quantum Well-Based Solar Cell
351(22)
Ashish Raman
Chetan Chaturvedi
Naveen Kumar
19.1 Introduction
351(2)
19.2 Theoretical Aspects of Solar Cell
353(1)
19.3 Device Design and Simulation Setup
354(2)
19.4 Results and Discussion
356(11)
19.4.1 GaSb/GaAs MQWs Solar Cell
356(2)
19.4.2 InGaP/GaAs MQW Solar Cell
358(2)
19.4.3 InP/GaAs MQW Solar Cell
360(1)
19.4.4 AlGaAs/GaAs MQW Solar Cell
361(2)
19.4.5 Optimization
363(4)
19.5 Comparative Analysis
367(3)
19.6 Conclusion
370(1)
References
370(3)
20 Mitigation Techniques for Removal of Dust on Solar Photovoltaic System
373(20)
Pandiyan P.
Saravanan S.
Chinnadurai T.
Ramji Tiwari
Prabaharan N.
Umashankar S.
20.1 Introduction
373(2)
20.2 Influencing Factors for Deposition of Dust
375(4)
20.2.1 Ecological Factors
375(1)
20.2.1.1 Direction of Wind and its Velocity
375(1)
20.2.1.2 Temperature and Moisture
376(1)
20.2.1.3 Humidity
377(1)
20.2.1.4 Rainfall
377(1)
20.2.1.5 Dust Properties
377(1)
20.2.1.6 Bird Droppings
378(1)
20.2.2 Factors Influencing Installation
378(1)
20.2.2.1 Orientation and Tilt Angle
378(1)
20.2.2.2 Height
378(1)
20.2.2.3 Top Surface of the Solar Panels
378(1)
20.2.3 Installed Location and Exposure Time
379(1)
20.3 Effects of Deposition of Dust on the Solar Panels
379(2)
20.3.1 Influence of Electrical Characteristics
379(1)
20.3.2 Influence of the Optical Characteristics
380(1)
20.3.3 Influence of the Thermal Characteristic
381(1)
20.4 Methods of Cleaning System
381(8)
20.4.1 Natural Cleaning Method
384(1)
20.4.2 Manual Cleaning Method
384(1)
20.4.3 Self-Cleaning Method
385(1)
20.4.3.1 Active Cleaning
385(1)
20.4.3.2 Passive Cleaning
388(1)
20.5 Conclusion
389(1)
References
389(4)
21 Solid-State Air-Conditioning System Using Photovoltaic Module
393(18)
Y. Thiagarajan
S. Karthikeyan
K. Santhosh
M. Keerthana
Gabriel Gomes de Oliveira
21.1 Introduction
393(2)
21.1.1 Thermoelectric Cooler (TEC)
394(1)
21.2 Fabrication of the Solid State Air-Conditioning System
395(1)
21.2.1 Description of the Proposed Model
395(1)
21.2.2 Peltier Effect
395(1)
21.2.3 Comparison Between the Existing Framework and Proposed System
396(1)
21.3 Hardware Implementation
396(4)
21.3.1 8051 Architecture
396(1)
21.3.2 Microcontroller PCB
397(1)
21.3.3 Photovoltaic Module
397(1)
21.3.4 Solar Radiation
397(1)
21.3.5 Battery
398(1)
21.3.6 Relay
399(1)
21.3.7 5x1 Keypad
400(1)
21.3.8 Peltier Sensor
400(1)
21.3.9 Solenoid Valve
400(1)
21.4 Software Analysis
400(9)
21.4.1 KEIL Compiler
401(1)
21.4.2 Gathering with Cx51
401(1)
21.4.3 Running Cx51 from the Command Prompt
401(1)
21.4.4 Program for AT89S52
402(1)
21.4.4.1 Solar Coding
402(1)
21.4.4.2 Peltier Coding
406(3)
21.5 Conclusion
409(1)
References
409(2)
22 Cu2ZnSnS4 Thin Film Solar Cell: Fabrication and Characterization
411(16)
Kinjal Patel
Neelkanth G. Dhere
Vipul Kheraj
Dimple Shah
22.1 Introduction
411(4)
22.1.1 Solar Photovoltaics: A Key to Energy Elucidation
412(1)
22.1.2 Thin Film Solar Cells
413(1)
22.1.3 CZTS Solar Cells
414(1)
22.2 Fabrication of Cu2ZnSnS4 Thin Film Solar Cell
415(5)
22.2.1 Glass Cleaning
416(1)
22.2.2 Molybdenum Deposition
417(1)
22.2.3 CZTS Thin Film Coating
417(1)
22.2.4 CdS Deposition
417(1)
22.2.5 ZnO and Al-ZnO Coating
418(1)
22.2.6 Chromium/Silver Front Contact Grid
418(1)
22.2.7 CZTS Solar Cell Device
419(1)
22.3 Characterization of Cu2ZnSnS4 Thin Film Solar Cell
420(4)
22.3.1 Typical Solar Cell Characterizations
420(1)
22.3.2 Current-Voltage (I-V) Measurement
421(2)
22.3.3 Quantum Efficiency (QE)
423(1)
22.4 Conclusion
424(1)
Acknowledgement
425(1)
References
425(2)
23 Parameter Estimation of Solar Cell Using Gravitational Search Algorithm
427(20)
Kaustuv Das
Raju Basak
Souvik Ganguli
Asoke Kumar Paul
23.1 Introduction
427(2)
23.2 Modelling of Photovoltaic Unit
429(2)
23.2.1 Two-Diode Structure
430(1)
23.3 Formation of Function
431(2)
23.4 Gravitational Search Algorithm
433(3)
23.4.1 The Gravitational Search Algorithm is Shown in Steps as Follows
435(1)
23.5 Review of GSA
436(1)
23.6 Application of GSA
436(1)
23.7 Summary and Future Scope of Work
436(1)
23.8 Particle Swarm Optimization (PSO)
437(2)
23.8.1 Steps Involved for Particle Swarm Optimization
439(1)
23.9 Results and Discussion
439(4)
23.10 Conclusion
443(1)
References
443(4)
24 Study of the Most Commonly Utilized Maximum Power Point (MPP) Tracking (MPPT) Schemes for SPV Systems
447(26)
Pawan Kumar Pathak
Anil Kumar Yadav
P.A. Alvi
24.1 Introduction
447(1)
24.2 Problem Overview in SPV Power Extraction
448(1)
24.3 Modeling of SPV System
449(2)
24.4 MPPT Schemes
451(19)
24.4.1 Perturb and Observe (P&O)
451(4)
24.4.2 Incremental Conductance
455(4)
24.4.3 Fuzzy Logic (FL) Based
459(7)
24.4.4 Hybrid
466(4)
24.5 Conclusion
470(1)
References
470(3)
25 An Investigation and Design of Symmetric and Asymmetric Inverter for Various Applications
473(20)
L. Vijayaraja
S. Ganesh Kumar
M. Rivera
25.1 Introduction
473(1)
25.2 Evaluation of Multilevel Inverters and Its Application in Recent Times
474(2)
25.3 Design of 15-Level Inverter With Symmetric Voltage Source
476(1)
25.4 Experimentation of 27-Level Symmetric Inverter
477(5)
25.5 Design of 31-Level Inverter Using Asymmetric Voltage Sources
482(5)
25.5.1 Mathematical Model of 31-Level Inverter
483(4)
25.6 Development of 53-Level Inverter Using Packed Structures
487(4)
25.7 Summary
491(1)
References
491(2)
26 A Demand Side Management Controller Configuration for Interleaved DC-DC Converters Applicable for Renewable Energy Sources
493(24)
Davood Ghaderi
Gokay Bayrak
Umashankar Subramaniam
26.1 Introduction
493(3)
26.2 Control Method and Proposed Controller Investigation
496(8)
26.2.1 Power Sharing and Demand Side Management
501(3)
26.3 Simulation Results
504(4)
26.4 Experimental Results
508(4)
26.5 Conclusion
512(2)
References
514(3)
27 Applications of Hybrid Wind Solar Battery Based Microgrid for Small-Scale Stand-Alone Systems and Grid Integration for Multi-Feeder Systems
517(18)
P. Satish Kumar
27.1 Introduction
517(1)
27.2 Stand-Alone HRES System
518(7)
27.2.1 System Description
518(2)
27.2.2 Results and Discussion
520(1)
27.2.2.1 Performance of HRES During Source Variations Only
520(1)
27.2.2.2 Performance of HRES During Load Variations Only
523(1)
27.2.3 Conclusion
523(2)
27.3 Grid-Connected HRES System
525(6)
27.3.1 System Description
525(1)
27.3.2 Results and Discussion
525(1)
27.3.2.1 HRES Output
526(1)
27.3.2.2 Performance of Grid-Connected HRES for Nonlinear Loads
528(1)
27.3.2.3 Performance of Grid-Connected HRES for Source Voltage Imperfections
529(1)
27.3.3 Conclusion
530(1)
Acknowledgements
531(2)
References
533(2)
28 Challenging Issues and Solutions on Battery Thermal Management for Electric Vehicles
535(20)
A. Gayathri
V. Manimegalai
P. Krishnakumar
28.1 Introduction
535(1)
28.2 Principle and Working of Battery
536(1)
28.3 Types of Batteries
536(6)
28.3.1 Primary or Non-Rechargeable Batteries
537(1)
28.3.2 Secondary or Rechargeable Batteries
537(1)
28.3.2.1 Lead-Acid Batteries
538(1)
28.3.2.2 Nickel Cadmium (Ni-Cd)
538(1)
28.3.2.3 Nickel-Metal Hydride (Ni-MH)
538(1)
28.3.2.4 Lithium-Ion (Li-Ion)
539(1)
28.3.3 Selection of Batteries
539(1)
28.3.3.1 Why Lithium-Ion Battery?
540(2)
28.4 Thermal Behavior of Batteries
542(1)
28.5 Battery Thermal Management Systems
543(1)
28.6 Methods of Battery Thermal Management Systems
544(7)
28.6.1 Air Cooling BTMS
544(2)
28.6.2 Liquid Cooling BTMS
546(1)
28.6.3 Refrigerant Direct Cooling System BTMS
547(1)
28.6.4 Phase Change Material-Based BTMS
548(1)
28.6.5 Heat Pipe-Based BTMS
549(1)
28.6.6 Thermoelectric Cooling
550(1)
28.7 Conclusion
551(1)
References
551(4)
Index 555
Suman Lata Tripathi, PhD, is a professor at Lovely Professional University with more than seventeen years of experience in academics. She has published more than 45 research papers in refereed journals and conferences. She has organized several workshops, summer internships, and expert lectures for students, and she has worked as a session chair, conference steering committee member, editorial board member, and reviewer for IEEE journals and conferences. She has published one edited book and currently has multiple volumes scheduled for publication, including volumes available from Wiley-Scrivener.

Parvej Ahmad Alvi, PhD, is an associate professor in the Department of Physics at Banasthali University, Rajasthan, India. He has more than 14 years of teaching and research experience in the area of modern physics, semiconductor physics, and nanotechnology. He has worked as an editorial board member and reviewer on several journals and conferences and has published more than 100 research papers in refereed international journals and conferences. He also has six books to his credit.

Umashankar Subramaniam, PhD, is an associate professor at the Renewable Energy Lab, College of Engineering, Prince Sultan University, Saudi Arabia. He has over 15 years of teaching, research and industrial experience. He is an Associate Editor at the journal, IEEE Access, and is an editor on the journal, Heliyon, along with other jorunals. He has published more than 250 research papers in academic journals and conferences and has also contributed to over a dozen books.