Muutke küpsiste eelistusi

E-raamat: Electrical Energy Efficiency: Technologies and Applications

(University of Bergamo, Italy), (Universitat Politecnica de Catalunya)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 15-Mar-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119942061
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 116,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 15-Mar-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119942061
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness.

This single-source reference brings a practical focus to the subject of electrical energy efficiency, providing detailed theory and practical applications to enable engineers to find solutions for electroefficiency problems. It presents power supplier as well as electricity user perspectives and promotes routine implementation of good engineering practice.

Key features include:





a comprehensive overview of the different technologies involved in electroefficiency, outlining monitoring and control concepts and practical design techniques used in industrial applications; description of the current standards of electrical motors, with illustrative case studies showing how to achieve better design; up-to-date information on standarization, technologies, economic realities and energy efficiency indicators (the main types and international results); coverage on the quality and efficiency of distribution systems (the impact on distribution systems and loads, and the calculation of power losses in distribution lines and in power transformers).

With invaluable practical advice, this book is suited to practicing electrical engineers, design engineers, installation designers, M&E designers, and economic engineers. It equips maintenance and energy managers, planners, and infrastructure managers with the necessary knowledge to properly evaluate the wealth of electrical energy efficiency solutions for large investments. This reference also provides interesting reading material for energy researchers, policy makers, consultants, postgraduate engineering students and final year undergraduate engineering students.
List of Contributors
xi
Preface xiii
Foreword xv
1 Overview of Standardization of Energy Efficiency
1(8)
Franco Bua
Angelo Baggini
1.1 Standardization
3(6)
1.1.1 ISO
4(1)
1.1.2 IEC
5(1)
1.1.3 CEN and CENELEC
6(2)
Further Readings
8(1)
2 Cables and Lines
9(12)
Paola Pezzini
Andreas Sumper
2.1 Theory of Heat Transfer
10(2)
2.1.1 Conduction
10(1)
2.1.2 Convection
10(1)
2.1.3 Radiation
11(1)
2.2 Current Rating of Cables Installed in Free Air
12(3)
2.3 Economic Aspects
15(1)
2.4 Calculation of the Current Rating: Total Costs
16(2)
2.4.1 Evaluation of CJ
16(2)
2.5 Determination of Economic Conductor Sizes
18(1)
2.5.1 Economic Current Range for Each Conductor in a Series of Sizes
18(1)
2.5.2 Economic Conductor Size for a Given Load
18(1)
2.6 Summary
19(2)
References
19(2)
3 Power Transformers
21(50)
Roman Targosz
Stefan Fasshinder
Angelo Baggini
3.1 Losses in Transformers
23(7)
3.1.1 No-Load Losses
23(1)
3.1.2 Load Losses
24(1)
3.1.3 Auxiliary Losses
24(1)
3.1.4 Extra Losses due to Harmonics, Unbalance and Reactive Power
25(5)
3.2 Efficiency and Load Factor
30(1)
3.3 Losses and Cooling System
31(1)
3.4 Energy Efficiency Standards and Regulations
32(7)
3.4.1 MEPS
37(1)
3.4.2 Mandatory Labelling
37(1)
3.4.3 Voluntary Programmes
37(2)
3.5 Life Cycle Costing
39(8)
3.5.1 Life Cycle Cost of Transformers
40(4)
3.5.2 Detailed Considerations
44(3)
3.6 Design, Material and Manufacturing
47(7)
3.6.1 Core
47(5)
3.6.2 Windings
52(2)
3.6.3 Other Developments
54(1)
3.7 Case Study - Evaluation TOC of an Industrial Transformer
54(6)
3.7.1 Method
55(1)
3.7.2 Results
56(3)
References
59(1)
Further Readings
59(1)
3.A Annex
60(11)
3.A.1 Selected MEPS
60(11)
4 Building Automation, Control and Management Systems
71(54)
Angelo Baggini
Annalisa Marra
4.1 Automation Functions for Energy Savings
72(4)
4.1.1 Temperature Control
72(2)
4.1.2 Lighting
74(1)
4.1.3 Drives and Motors
74(1)
4.1.4 Technical Alarms and Management
75(1)
4.1.5 Remote Control
76(1)
4.2 Automation Systems
76(10)
4.2.1 KNX Systems
77(5)
4.2.2 Scada Systems
82(4)
4.3 Automation Device Own Consumption
86(1)
4.4 Basic Schemes
86(27)
4.4.1 Heating and Cooling
86(9)
4.4.2 Ventilation and Air Conditioning
95(12)
4.4.3 Lighting
107(2)
4.4.4 Sunscreens
109(1)
4.4.5 Technical Building Management
110(1)
4.4.6 Technical Installations in the Building
111(2)
4.5 The Estimate of Building Energy Performance
113(12)
4.5.1 European Standard EN 15232
113(2)
4.5.2 Comparison of Methods: Detailed Calculations and BAC Factors
115(9)
Further Readings
124(1)
5 Power Quality Phenomena and Indicators
125(40)
Andrei Cziker
Zbigniew Hanzelka
Ireana Wasiak
5.1 RMS Voltage Level
126(6)
5.1.1 Sources
127(1)
5.1.2 Effects on Energy Efficiency
128(2)
5.1.3 Mitigation Methods
130(2)
5.2 Voltage Fluctuations
132(6)
5.2.1 Disturbance Description
132(2)
5.2.2 Sources of Voltage Fluctuations
134(1)
5.2.3 Effects and Cost
135(3)
5.2.4 Mitigation Methods
138(1)
5.3 Voltage and Current Unbalance
138(7)
5.3.1 Disturbance Description
139(1)
5.3.2 Sources
140(1)
5.3.3 Effect and Cost
140(3)
5.3.4 Mitigation Methods
143(2)
5.4 Voltage and Current Distortion
145(20)
5.4.1 Disturbance Description
145(1)
5.4.2 Sources
146(1)
5.4.3 Effects and Cost
147(6)
5.4.4 Mitigation Methods
153(9)
References
162(1)
Further Readings
162(3)
6 On Site Generation and Microgrids
165(24)
Irena Wasiak
Zhigniew Hanzelka
6.1 Technologies of Distributed Energy Resources
166(9)
6.1.1 Energy Sources
166(4)
6.1.2 Energy Storage
170(5)
6.2 Impact of DG on Power Losses in Distribution Networks
175(3)
6.3 Microgrids
178(11)
6.3.1 Concept
178(2)
6.3.2 Energy Storage Applications
180(2)
6.3.3 Management and Control
182(2)
6.3.4 Power Quality and Reliability in Microgrids
184(2)
References
186(1)
Further Readings
187(2)
7 Electric Motors
189(40)
Joris Lemmens
Wim Deprez
7.1 Losses in Electric Motors
190(9)
7.1.1 Power Balance and Energy Efficiency
191(2)
7.1.2 Loss Components Classification
193(2)
7.1.3 Influence Factors
195(4)
7.2 Motor Efficiency Standards
199(9)
7.2.1 Efficiency Classification Standards
199(1)
7.2.2 Efficiency Measurement Standards
200(7)
7.2.3 Future Standard for Variable Speed Drives
207(1)
7.3 High Efficiency Motor Technology
208(21)
7.3.1 Motor Materials
210(8)
7.3.2 Motor Design
218(6)
7.3.3 Motor Manufacturing
224(2)
References
226(3)
8 Lighting
229(34)
Mircea Chindris
Antoni Sudria-Andreu
8.1 Energy and Lighting Systems
230(3)
8.1.1 Energy Consumption in Lighting Systems
230(1)
8.1.2 Energy Efficiency in Lighting Systems
231(2)
8.2 Regulations
233(1)
8.3 Technological Advances in Lighting Systems
234(8)
8.3.1 Efficient Light Sources
234(5)
8.3.2 Efficient Ballasts
239(2)
8.3.3 Efficient Luminaries
241(1)
8.4 Energy Efficiency in Indoor Lighting Systems
242(10)
8.4.1 Policy Actions to Support Energy Efficiency
242(3)
8.4.2 Retrofit or Redesign?
245(2)
8.4.3 Lighting Controls
247(4)
8.4.4 Daylighting
251(1)
8.5 Energy Efficiency in Outdoor Lighting Systems
252(7)
8.5.1 Efficient Lamps and Luminaires
253(3)
8.5.2 Outdoor Lighting Controls
256(3)
8.6 Maintenance of Lighting Systems
259(4)
References
260(1)
Further Readings
261(2)
9 Electrical Drives and Power Electronics
263(32)
Daniel Montesinos-Miracle
Joan Bergas-Jane
Edris Pouresmaeil
9.1 Control Methods for Induction Motors and PMSM
266(8)
9.1.1 Vlf Control
266(5)
9.1.2 Vector Control
271(1)
9.1.3 DTC
272(2)
9.2 Energy Optimal Control Methods
274(2)
9.2.1 Converter Losses
275(1)
9.2.2 Motor Losses
276(1)
9.2.3 Energy Optimal Control Strategies
276(1)
9.3 Topology of the Variable Speed Drive
276(4)
9.3.1 Input Stage
277(1)
9.3.2 DC Bus
278(1)
9.3.3 The Inverter
279(1)
9.4 New Trends on Power Semiconductors
280(15)
9.4.1 Modulation Techniques
281(2)
9.4.2 Review of Different Modulation Methods
283(8)
References
291(2)
Further Readings
293(2)
10 Industrial Heating Processes
295(40)
Mircea Chindris
Andreas Sumper
10.1 General Aspects Regarding Electroheating in Industry
298(4)
10.2 Main Electroheating Technologies
302(24)
10.2.1 Resistance Heating
302(7)
10.2.2 Infrared Heating
309(5)
10.2.3 Induction Heating
314(4)
10.2.4 Dielectric Heating
318(7)
10.2.5 Arc Furnaces
325(1)
10.3 Specific Aspects Regarding the Increase of Energy Efficiency in Industrial Heating Processes
326(9)
10.3.1 Replacement of Traditional Heating Technologies
327(2)
10.3.2 Selection of the Most Suitable Electrotechnology
329(1)
10.3.3 Increasing the Efficiency of the Existing Electroheating Equipment
330(3)
References
333(1)
Further Readings
334(1)
11 Heat, Ventilation and Air Conditioning (HVAC)
335(22)
Roberto Villafafila-Robles
Jaume Salom
11.1 Basic Concepts
336(2)
11.2 Environmental Thermal Comfort
338(4)
11.3 HVAC Systems
342(6)
11.3.1 Energy Conversion
344(2)
11.3.2 Energy Balance
346(1)
11.3.3 Energy Efficiency
347(1)
11.4 Energy Measures in HVAC Systems
348(9)
11.4.1 Final Service
348(1)
11.4.2 Passive Methods
348(3)
11.4.3 Conversion Device
351(2)
11.4.4 Energy Sources
353(1)
References
354(1)
Further Readings
355(2)
12 Data Centres
357(14)
Angelo Baggini
Franco Bua
12.1 Standards
357(1)
12.2 Consumption Profile
358(2)
12.2.1 Energy Performance Index
360(1)
12.3 IT Infrastructure and Equipment
360(3)
12.3.1 Blade Server
360(1)
12.3.2 Storage
361(1)
12.3.3 Network Equipment
361(1)
12.3.4 Consolidation
362(1)
12.3.5 Virtualization
362(1)
12.3.6 Software
363(1)
12.4 Facility Infrastructure
363(5)
12.4.1 Electrical Infrastructure
363(2)
12.4.2 HVAC Infrastructure
365(3)
12.5 DG and CHP for Data Centres
368(1)
12.6 Organizing for Energy Efficiency
369(2)
Further Readings
370(1)
13 Reactive Power Compensation
371(28)
Zhigniew Hanzelka
Waldemar Szpyra
Andrei Cziker
Krzysztof Piatek
13.1 Reactive Power Compensation in an Electric Utility Network
373(7)
13.1.1 Economic Efficiency of Reactive Power Compensation
377(3)
13.2 Reactive Power Compensation in an Industrial Network
380(11)
13.2.1 Linear Loads
381(2)
13.2.2 Group Compensation
383(4)
13.2.3 Nonlinear Loads
387(4)
13.3 Var Compensation
391(8)
13.3.1 A Synchronous Condenser
391(1)
13.3.2 Capacitor Banks
392(1)
13.3.3 Power Electronic Compensators/Stabilizers
393(5)
References
398(1)
Further Readings
398(1)
Index 399
Professor Angelo Baggini, University of Bergamo, Bergamo, Italy Angelo Baggini is currently aggregate professor of Electrical Engineering in the Industrial Engineering Department at University of Bergamo. Since 1997 he has been a member of CEI TC14, 64 and 311, and he has been secretary of CENELEC TC14 since 2007. He is also a member of IEC SMB-SG1. Angelo Baggini has authored over 200 technical and scientific papers in journals as well as international conference papers, and his book Handbook of Power Quality was published by Wiley in 2008.

Dr Andreas Sumper, Electrical Engineering Department, CITCEA, Univeritat Politècnica de Catalunya, Spain Andreas Sumper is lecturer in the Department of Electrical Engineering at the Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona (EUETIB), Universitat Politècnica de Catalunya. He is also the team leader for power system research at the Catalonia Institute for Energy Research, IREC. His research interests include energy efficiency, power quality, power system studies and distributed generation. Andreas Sumper has authored over 100 technical and scientific papers.