Muutke küpsiste eelistusi

E-raamat: Electrical Machine Fundamentals with Numerical Simulation using MATLAB / SIMULINK

  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119682653
  • Formaat - PDF+DRM
  • Hind: 156,78 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119682653

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The book will focus on the basic understanding of the concept of electrical machines (working principles, equivalent circuit, and analysis) and will provide the simulation models of every type of machine described in the book. The book will elaborate onthe fundamental concepts of electrical machines along with several numerical problems and simulation models using Matlab/Simulink."--

A comprehensive text, combining all important concepts and topics of Electrical Machines and featuring exhaustive simulation models based on MATLAB/Simulink

Electrical Machine Fundamentals with Numerical Simulation using MATLAB/Simulink provides readers with a basic understanding of all key concepts related to electrical machines (including working principles, equivalent circuit, and analysis). It elaborates the fundamentals and offers numerical problems for students to work through. Uniquely, this text includes simulation models of every type of machine described in the book, enabling students to design and analyse machines on their own.

Unlike other books on the subject, this book meets all the needs of students in electrical machine courses. It balances analytical treatment, physical explanation, and hands-on examples and models with a range of difficulty levels. The authors present complex ideas in simple, easy-to-understand language, allowing students in all engineering disciplines to build a solid foundation in the principles of electrical machines. This book:

  • Includes clear elaboration of fundamental concepts in the area of electrical machines, using simple language for optimal and enhanced learning
  • Provides wide coverage of topics, aligning with the electrical machines syllabi of most international universities
  • Contains extensive numerical problems and offers MATLAB/Simulink simulation models for the covered machine types
  • Describes MATLAB/Simulink modelling procedure and introduces the modelling environment to novices
  • Covers magnetic circuits, transformers, rotating machines, DC machines, electric vehicle motors, multiphase machine concept, winding design and details, finite element analysis, and more

Electrical Machine Fundamentals with Numerical Simulation using MATLAB/Simulink is a well-balanced textbook perfect for undergraduate students in all engineering majors. Additionally, its comprehensive treatment of electrical machines makes it suitable as a reference for researchers in the field.

Preface xxi
Acknowledgements xxiii
1 Fundamentals Of Electrical Machines
1(68)
1.1 Preliminary Remarks
1(1)
1.2 Basic Laws of Electrical Engineering
1(37)
1.2.1 Ohm's Law
1(1)
1.2.2 Generalization of Ohm's Law
2(1)
1.2.2.1 Derivation of Eq. (1.6)
2(1)
1.2.3 Ohm's Law for Magnetic Circuits
3(1)
1.2.4 Kirchhoff's Laws for Magnetic Circuits
3(2)
1.2.5 Lorentz Force Law
5(1)
1.2.6 Biot-Savart Law
6(11)
1.2.7 Ampere Circuital Law
17(3)
1.2.8 Faraday's Law
20(4)
1.2.8.1 Motional emf
24(5)
1.2.9 Flux Linkages and Induced Voltages
29(1)
1.2.10 Induced Voltages
29(1)
1.2.11 Induced Electric Fields
30(7)
1.2.12 Reformulation of Faraday's Law
37(1)
1.3 Inductance
38(9)
1.3.1 Application of Ampere's Law to Find B in a Solenoid
39(1)
1.3.2 Magnetic Field of a Toroid
40(1)
1.3.3 The Inductance of Circular Air-Cored Toroid
40(4)
1.3.4 Mutual Inductance
44(3)
1.4 Energy
47(2)
1.5 Overview of Electric Machines
49(9)
1.6 Summary
58(11)
Problems
58(9)
References
67(2)
2 Magnetic Circuits
69(78)
2.1 Preliminary Remarks
69(1)
2.2 Permeability
69(1)
2.3 Classification of Magnetic Materials
70(4)
2.3.1 Uniform Magnetic Field
72(1)
2.3.2 Magnetic-Field Intensity
72(2)
2.4 Hysteresis Loop
74(4)
2.4.1 Hysteresis Loop for Soft Iron and Steel
76(2)
2.5 Eddy-Current and Core Losses
78(4)
2.6 Magnetic Circuits
82(18)
2.6.1 The Magnetic Circuit Concept
82(1)
2.6.2 Magnetic Circuits Terminology
82(4)
2.6.2.1 Limitations of the Analogy Between Electric and Magnetic Circuits
86(1)
2.6.3 Effect of Air Gaps
86(1)
2.6.3.1 Magnetic Circuit with an Air Gap
86(3)
2.6.3.2 Magnetic Forces Exerted by Electromagnets
89(11)
2.7 Field Energy
100(4)
2.7.1 Energy Stored in a Magnetic Field
100(1)
2.7.1.1 The Magnetic Energy in Terms of the Magnetic Induction B
101(1)
2.7.1.2 The Magnetic Energy in Terms of the Current Density J and the Vector Potential A
102(1)
2.7.1.3 The Magnetic Energy in Terms of the Current I and of the Flux Φm
103(1)
2.7.1.4 The Magnetic Energy in Terms of the Currents and Inductances
103(1)
2.8 The Magnetic Energy for a Solenoid Carrying a Current I
104(2)
2.9 Energy Flow Diagram
106(4)
2.9.1 Power Flow Diagram of DC Generator and DC Motor
106(2)
2.9.1.1 Power Flow Diagram and Losses of Induction Motor
108(1)
2.9.1.2 Rotational Losses
109(1)
2.10 Multiple Excited Systems
110(3)
2.11 Doubly Excited Systems
113(113)
2.11.1 Torque Developed
116(1)
2.11.1.1 Excitation Torque
117(5)
2.11.1.2 Reluctance Torque
122(4)
2.12 Concept of Rotating Magnetic Field
126(1)
2.12.1 Rotating Magnetic Field due to Three-Phase Currents
126(4)
2.12.1.1 Speed of Rotating Magnetic Field
130(1)
2.12.1.2 Direction of Rotating Magnetic Field
131(1)
2.12.2 Alternate Mathematical Analysis for Rotating Magnetic Field
131(3)
2.13 Summary
134(13)
Problems
135(9)
References
144(3)
3 Single-Phase And Three-Phase Transformers
147(110)
3.1 Preliminary Remarks
147(2)
3.2 Classification of Transformers
149(5)
3.2.1 Classification Based on Number of Phases
149(1)
3.2.1.1 Single-Phase Transformers
149(1)
3.2.1.2 Three-Phase Transformers
149(1)
3.2.1.3 Multi-Phase Transformers
150(1)
3.2.2 Classification Based on Operation
150(1)
3.2.2.1 Step-Up Transformers
150(1)
3.2.2.2 Step-Down Transformers
151(1)
3.2.3 Classification Based on Construction
151(1)
3.2.3.1 Core-Type Transformers
151(1)
3.2.3.2 Shell-Type Transformers
151(2)
3.2.4 Classification Based on Number of Windings
153(1)
3.2.4.1 Single-Winding Transformer
153(1)
3.2.4.2 Two-Winding Transformer
153(1)
3.2.4.3 Three-Winding Transformer
153(1)
3.2.5 Classification Based on Use
153(1)
3.2.5.1 Power Transformer
153(1)
3.2.5.2 Distribution Transformer
154(1)
3.3 Principle of Operation of the Transformer
154(3)
3.3.1 Ideal Transformer
154(3)
3.4 Impedance Transformation
157(1)
3.5 DOT Convention
158(1)
3.6 Real/Practical Transformer
158(2)
3.7 Equivalent Circuit of a Single-Phase Transformer
160(6)
3.8 Phasor Diagrams Under Load Condition
166(4)
3.9 Testing of Transformer
170(5)
3.9.1 Open-Circuit Test
171(1)
3.9.2 Short-Circuit Test
172(3)
3.10 Performance Measures of a Transformer
175(10)
3.10.1 Voltage Regulation
175(2)
3.10.1.1 Condition for Maximum Voltage Regulation
177(1)
3.10.1.2 Condition for Zero Voltage Regulation
177(3)
3.10.2 Efficiency of Transformer
180(1)
3.10.3 Maximum Efficiency Condition
181(4)
3.11 All-Day Efficiency or Energy Efficiency
185(1)
3.12 Autotransformer
186(4)
3.13 Three-Phase Transformer
190(7)
3.13.1 Input (Y), Output (Δ)
192(2)
3.13.2 Input Delta (Δ), Output Star (Y)
194(1)
3.13.3 Input Delta (Δ), Output Delta (Δ)
195(1)
3.13.4 Input Star (Y), Output Star (Y)
196(1)
3.14 Single-Phase Equivalent Circuit of Three-Phase Transformer
197(3)
3.15 Open-Delta Connection or V Connection
200(5)
3.16 Harmonics in a Single-Phase Transformer
205(10)
3.16.1 Excitation Phenomena in a Single-Phase Transformer
208(2)
3.16.2 Harmonics in a Three-Phase Transformer
210(3)
3.16.2.1 Star-Delta Connection with Grounded Neutral
213(1)
3.16.2.2 Star-Delta Connection without Grounded Neutral
214(1)
3.16.3 Summary
214(1)
3.16.4 Star-Star with Isolated Neutral
214(1)
3.17 Disadvantages of Harmonics in Transformer
215(2)
3.17.1 Effect of Harmonic Currents
215(1)
3.17.2 Electromagnetic Interference
215(1)
3.17.3 Effect of Harmonic Voltages
215(1)
3.17.4 Summary
216(1)
3.17.5 Oscillating Neutral Phenomena
216(1)
3.18 Open Circuit and Short-Circuit Conditions in a Three-Phase Transformer
217(2)
3.19 Matlab/Simulink Model of a Single-Phase Transformer
219(3)
3.20 Matlab/Simulink Model of Testing of Transformer
222(1)
3.21 Matlab/Simulink Model of Autotransformer
223(1)
3.22 Matlab/Simulink Model of Three-Phase Transformer
223(9)
3.23 Supplementary Solved Problems
232(17)
3.24 Summary
249(1)
3.25 Problems
249(8)
References
255(2)
4 Fundamentals Of Rotating Electrical Machines And Machine Windings
257(84)
4.1 Preliminary Remarks
257(1)
4.2 Generator Principle
257(4)
4.2.1 Simple Loop Generator
257(2)
4.2.2 Action of Commutator
259(1)
4.2.3 Force on a Conductor
260(1)
4.2.3.1 DC Motor Principle
260(1)
4.2.3.2 Motor Action
261(1)
4.3 Machine Windings
261(52)
4.3.1 Coil Construction
261(1)
4.3.1.1 Coil Construction: Distributed Winding
261(1)
4.3.1.2 Coil Construction: Concentrated Winding
262(1)
4.3.1.3 Coil Construction: Conductor Bar
262(1)
4.3.2 Revolving (Rotor) Winding
262(1)
4.3.3 Stationary (Stator) Winding
262(1)
4.3.4 DC Armature Windings
262(1)
4.3.4.1 Pole Pitch (Yp)
263(1)
4.3.4.2 Coil Pitch or Coil Span (Ycs)
263(1)
4.3.4.3 Back Pitch (Yb)
263(1)
4.3.4.4 Front Pitch (Yf)
264(1)
4.3.4.5 Resultant Pitch (Y)
264(1)
4.3.4.6 Commutator Pitch (a)
264(1)
4.3.5 Lap Winding
265(1)
4.3.5.1 Lap Multiple or Parallel Windings
265(1)
4.3.5.2 Formulas for Lap Winding
266(1)
4.3.5.3 Multiplex, Single, Double, and Triple Windings
267(1)
4.3.5.4 Meaning of the Term Re-entrant
268(1)
4.3.5.5 Multiplex Lap Windings
268(11)
4.3.6 Wave Winding
279(2)
4.3.6.1 Formulas for Wave Winding
281(1)
4.3.6.2 Multiplex Wave or Series-Parallel Winding
282(1)
4.3.6.3 Formulas for Series-Parallel Winding
283(1)
4.3.7 Symmetrical Windings
284(1)
4.3.7.1 Possible Symmetrical Windings for DC Machines of a Different Number of Poles
284(1)
4.3.8 Equipotential Connectors (Equalizing Rings)
284(2)
4.3.9 Applications of Lap and Wave Windings
286(24)
4.3.10 Dummy or Idle Coils
310(1)
4.3.10.1 Dummy Coils
310(1)
4.3.11 Whole-Coil Winding and Half-Coil Winding
311(1)
4.3.12 Concentrated Winding
312(1)
4.3.13 Distributed Winding
312(1)
4.4 Electromotive Force (emf) Equation
313(3)
4.4.1 Emf Equation of an Alternator [ 1]
313(1)
4.4.1.1 Winding Factor (Coil Pitch and Distributed Windings)
313(1)
4.4.2 Winding Factors
313(1)
4.4.2.1 Pitch Factor or Coil Pitch (Pitch Factor (Kp) or Coil Span Factor [ Kc])
314(1)
4.4.3 Distribution Factor (Breadth Factor (Kb) or Distribution Factor (Kd))
315(1)
4.4.3.1 Distribution Factor (Kd)
315(1)
4.5 Magnetomotive Force (mmf) of AC Windings
316(6)
4.5.1 Mmf and Flux in Rotating Machine
316(1)
4.5.2 Main Air-Gap Flux (Field Flux)
316(1)
4.5.3 Mmf of a Coil [ 5]
316(1)
4.5.3.1 mmf
316(1)
4.5.3.2 Mmf of Distributed Windings
317(1)
4.5.3.3 Mmf Space Wave of a Single Coil
317(2)
4.5.3.4 Mmf Space Wave of One Phase of a Distributed Winding [ 6]
319(3)
4.6 Harmonic Effect [ 7]
322(8)
4.6.1 The Form Factor and the emf per Conductor
322(1)
4.6.2 The Wave Form
323(1)
4.6.3 Problem Due to Harmonics
324(1)
4.6.4 Elimination or Suppression of Harmonics
324(1)
4.6.4.1 Shape of Pole Face
324(1)
4.6.4.2 Use of Several Slots per Phase per Pole
324(1)
4.6.4.3 Use of Short-Pitch Windings
325(2)
4.6.4.4 Effect of the Y- and Δ - Connection on Harmonics
327(1)
4.6.4.5 Harmonics Produced by Armature Slots
328(2)
4.1 Basic Principles of Electric Machines
330(9)
4.7.1 AC Rotating Machines
331(1)
4.7.1.1 The Rotating Magnetic Field
331(2)
4.7.1.2 The Relationship between Electrical Frequency and the Speed of Magnetic Field Rotation
333(2)
4.7.1.3 Reversing the Direction of the Magnetic Field Rotation
335(1)
4.7.1.4 The Induced Voltage in AC Machines
335(1)
4.7.1.5 The Induced Voltage in a Coil on a Two-Pole Stator
335(2)
4.7.1.6 The Induced Voltage in a Three-Phase Set of Coils
337(1)
4.7.1.7 The rms Voltage in a Three-Phase Stator
338(1)
4.7.2 The Induced Torque in an AC Machine
338(1)
4.8 Summary
339(2)
Problems
339(1)
References
340(1)
5 Dc Machines
341(60)
5.1 Preliminary Remarks
341(1)
5.2 Construction and Types of DC Generator
342(3)
5.2.1 Construction of DC Machine
342(1)
5.2.2 Types of DC Generator
343(2)
5.3 Principle of Operation of DC Generator
345(4)
5.3.1 Voltage Build-Up in a DC Generator
346(1)
5.3.2 Function of Commutator
347(2)
5.4 Commutation Problem and Solution
349(2)
5.4.1 Brush Shifting
349(1)
5.4.2 Commutating Poles
350(1)
5.4.3 Compensating Windings
350(1)
5.5 Types of Windings
351(1)
5.6 Emf Equations in a DC Generator
351(2)
5.7 Brush Placement in a DC Machine
353(1)
5.8 Equivalent Circuit of DC Generator
354(1)
5.9 Losses of DC Generator
354(6)
5.10 Armature Reaction
360(2)
5.10.1 No-Load Operation
361(1)
5.10.2 Loaded Operation
361(1)
5.11 Principle of Operation of a DC Motor
362(2)
5.11.1 Equivalent Circuit of a DC Motor
363(1)
5.12 Emf and Torque Equations of DC Motor
364(1)
5.13 Types of DC Motor
364(3)
5.13.1 Separately Excited DC Motor
364(1)
5.13.2 Self-Excited DC Motor
365(1)
5.13.2.1 Shunt DC Motor
365(1)
5.13.2.2 Series DC Motor
366(1)
5.14 Characteristics of DC Motors
367(4)
5.14.1 Separately Excited and DC Shunt Motor
368(1)
5.14.2 DC Series Motor
369(1)
5.14.3 Compound Motor
370(1)
5.15 Starting of a DC Motor
371(3)
5.15.1 Design of a Starter for a DC Motor
372(1)
5.15.2 Types of Starters
373(1)
5.15.2.1 Three-Point Starter
373(1)
5.15.2.2 Four-Point Starter
374(1)
5.16 Speed Control of a DC Motor
374(4)
5.16.1 Separately Excited and DC Shunt Motor
375(1)
5.16.2 DC Series Motor
376(2)
5.17 Solved Examples
378(9)
5.18 Matlab/Simulink Model of a DC Machine
387(5)
5.18.1 Matlab/Simulink Model of a Separately/Shunt DC Motor
387(1)
5.18.2 Matlab/Simulink Model of a DC Series Motor
387(1)
5.18.3 Matlab/Simulink Model of a Compound DC Motor
388(4)
5.19 Summary
392(9)
Problems
392(7)
Reference
399(2)
6 Three-Phase Induction Machine
401(90)
6.1 Preliminary Remarks
401(1)
6.2 Construction of a Three-Phase Induction Machine
402(2)
6.2.1 Stator
402(1)
6.2.2 Stator Frame
403(1)
6.2.3 Rotor
403(1)
6.3 Principle Operation of a Three-Phase Induction Motor
404(4)
6.3.1 Slip in an Induction Motor
406(1)
6.3.2 Frequency of Rotor Voltage and Current
407(1)
6.3.3 Induction Machine and Transformer
408(1)
6.4 Per-phase Equivalent Circuit of a Three-Phase Induction Machine
408(7)
6.5 Power Flow Diagram in a Three-Phase Induction Motor
415(1)
6.6 Power Relations in a Three-Phase Induction Motor
416(1)
6.7 Steps to Find Powers and Efficiency
417(3)
6.8 Per-Phase Equivalent Circuit Considering Stray-Load Losses
420(1)
6.9 Torque and Power using Thevenin's Equivalent Circuit
421(3)
6.10 Torque-Speed Characteristics
424(9)
6.10.1 Condition for Maximum Torque
427(2)
6.10.2 Condition for Maximum Torque at Starting
429(1)
6.10.3 Approximate Equations
429(4)
6.11 Losses in a Three-Phase Induction Machine
433(2)
6.11.1 Copper Losses or Resistive Losses
433(1)
6.11.2 Magnetic Losses
434(1)
6.11.3 Mechanical Losses
434(1)
6.11.4 Stray-Load Losses
434(1)
6.12 Testing of a Three-Phase Induction Motor
435(8)
6.12.1 No-Load Test
435(1)
6.12.2 Blocked Rotor Test
436(1)
6.12.3 DC Test
437(1)
6.12.4 Load Test
438(3)
6.12.5 International Standards for Efficiency of Induction Machines
441(1)
6.12.6 International Standards for the Evaluation of Induction Motor Efficiency
442(1)
6.13 Starting of a Three-Phase Induction Motor
443(8)
6.13.1 Direct-on-Line Start
446(1)
6.13.2 Line Resistance Start
447(1)
6.13.3 Star-Delta Starter
448(1)
6.13.4 Autotransformer Starter
449(2)
6.14 Speed Control of Induction Machine
451(10)
6.14.1 By Varying the Frequency of the Supply
451(1)
6.14.2 Pole Changing Method
452(1)
6.14.2.1 Multiple Numbers of Windings
453(1)
6.14.2.2 Consequent Pole Method
453(1)
6.14.3 Stator Voltage Control
454(1)
6.14.3.1 Voltage/Frequency = Constant Control
455(1)
6.14.3.2 Rotor Resistance Variation
456(1)
6.14.3.3 Rotor Voltage Injection Method
456(1)
6.14.3.4 Cascade Connection of Induction Machines
456(2)
6.14.3.5 Pole-Phase Modulation for Speed Control
458(3)
6.15 Matlab/Simulink Modelling of the Three-Phase Induction Motor
461(8)
6.15.1 Plotting Torque-Speed Curve under Steady-State Condition
464(1)
6.15.2 Dynamic Simulation of Induction Machine
464(5)
6.16 Practice Examples
469(13)
6.17 Summary
482(9)
Problems
482(7)
References
489(2)
7 Synchronous Machines
491(102)
7.1 Preliminary Remarks
491(1)
7.2 Synchronous Machine Structures
492(4)
7.2.1 Stator and Rotor
492(4)
7.3 Working Principle of the Synchronous Generator
496(5)
7.3.1 The Synchronous Generator under No-Load
498(1)
7.3.2 The Synchronous Generator under Load
498(3)
7.4 Working Principle of the Synchronous Motor
501(1)
7.5 Starting of the Synchronous Motor
502(1)
7.5.1 Starting by External Motor
502(1)
7.5.2 Starting by using Damper Winding
503(1)
7.5.3 Starting by Variable Frequency Stator Supply
503(1)
7.6 Armature Reaction in Synchronous Motor
503(3)
7.7 Equivalent Circuit and Phasor Diagram of the Synchronous Machine
506(8)
7.7.1 Phasor Diagram of the Synchronous Generator
508(2)
7.7.2 Phasor Diagram of the Synchronous Motor
510(4)
7.8 Open-Circuit and Short-Circuit Characteristics
514(6)
7.8.1 Open-Circuit Curve
514(2)
7.8.2 Short-Circuit Curve
516(1)
7.8.3 The Unsaturated Synchronous Reactance
517(1)
7.8.4 The Saturated Synchronous Reactance
517(1)
7.8.5 Short-Circuit Ratio
518(2)
7.9 Voltage Regulation
520(9)
7.9.1 Emf or Synchronous Method
521(1)
7.9.2 The Ampere-Turn or mmf Method
522(4)
7.9.3 Zero-Power Factor Method or Potier Triangle Method
526(1)
7.9.3.1 Steps for Drawing Potier Triangles
526(1)
7.9.3.2 Procedure to Obtain Voltage Regulation using the Potier Triangle Method
526(3)
7.10 Efficiency of the Synchronous Machine
529(4)
7.11 Torque and Power Curves
533(4)
7.11.1 Real/Active Output Power of the Synchronous Generator
534(1)
7.11.2 Reactive Output Power of the Synchronous Generator
535(1)
7.11.3 Complex Input Power to the Synchronous Generator
536(1)
7.11.4 Real/Active Input Power to the Synchronous Generator
536(1)
7.11.5 Reactive Input Power to the Synchronous Generator
537(1)
7.12 Maximum Power Output of the Synchronous Generator
537(4)
7.13 Capability Curve of the Synchronous Machine
541(4)
7.14 Salient Pole Machine
545(13)
7.14.1 Phasor Diagram of a Salient Pole Synchronous Generator
547(5)
7.14.2 Power Delivered by a Salient Pole Synchronous Generator
552(3)
7.14.3 Maximum Active and Reactive Power Delivered by a Salient Pole Synchronous Generator
555(1)
7.14.3.1 Active Power
555(1)
7.14.3.2 Reactive Power
555(3)
7.15 Synchronization of an Alternator with a Bus-Bar
558(4)
7.15.1 Process of Synchronization
560(2)
7.16 Operation of a Synchronous Machine Connected to an Infinite Bus-Bar (Constant Vt and f)
562(8)
7.16.1 Motor Operation of Change in Excitation at Fixed Shaft Power
562(3)
7.16.2 Generator Operation for Change in Output Power at Fixed Excitation
565(5)
7.17 Hunting in the Synchronous Motor
570(2)
7.17.1 Role of the Damper Winding
572(1)
7.18 Parallel Operation of Synchronous Generators
572(9)
7.18.1 The Synchronous Generator Operating in Parallel with the Infinite Bus Bar
574(7)
7.19 Matlab/Simulink Model of a Salient Pole Synchronous Machine
581(5)
7.19.1 Results Motoring Mode
585(1)
7.19.2 Results Generator Mode
585(1)
7.20 Summary
586(7)
Problems
587(4)
Reference
591(2)
8 Single-Phase And Special Machines
593(46)
8.1 Preliminary Remarks
593(1)
8.2 Single-phase Induction Machine
593(4)
8.2.1 Field System in a Single-phase Machine
594(3)
8.3 Equivalent Circuit of Single-phase Machines
597(5)
8.3.1 Equivalent Circuit Analysis
599(1)
8.3.1.1 Approximate Equivalent Circuit
600(1)
8.3.1.2 Thevenin's Equivalent Circuit
601(1)
8.4 How to Make a Single-phase Induction Motor Self Starting
602(6)
8.5 Testing of an Induction Machine
608(4)
8.5.1 DC Test
609(1)
8.5.2 No-load Test
609(1)
8.5.3 Blocked-Rotor Test
610(2)
8.6 Types of Single-Phase Induction Motors
612(2)
8.6.1 Split-Phase Induction Motor
612(1)
8.6.2 Capacitor-Start Induction Motor
612(1)
8.6.3 Capacitor-Start Capacitor-Run Induction Motor (Two-Value Capacitor Method)
613(1)
8.7 Single-Phase Induction Motor Winding Design
614(7)
8.7.1 Split-Phase Induction Motor
617(1)
8.7.2 Capacitor-Start Motors
618(3)
8.8 Permanent Split-Capacitor (PSC) Motor
621(1)
8.9 Shaded-Pole Induction Motor
622(1)
8.10 Universal Motor
622(2)
8.11 Switched-Reluctance Motor (SRM)
624(1)
8.12 Permanent Magnet Synchronous Machines
624(1)
8.13 Brushless DC Motor
625(1)
8.14 Mathematical Model of the Single-phase Induction Motor
626(1)
8.15 Simulink Model of 5 Single-Phase Induction Motor
627(6)
8.16 Summary
633(6)
Problems
633(4)
Reference
637(2)
9 Motors For Electric Vehicles And Renewable Energy Systems
639(40)
9.1 Introduction
639(2)
9.2 Components of Electric Vehicles
641(22)
9.2.1 Types of EVs
641(1)
9.2.1.1 Battery-Based EVs
642(1)
9.2.1.2 Hybrid EVs
643(3)
9.2.1.3 Fuel-Cell EVs
646(3)
9.2.2 Significant Components of EVs
649(1)
9.2.2.1 Battery Bank
649(12)
9.2.2.2 DC-DC Converters
661(1)
9.2.2.3 Power Inverter
662(1)
9.2.2.4 Electric Motor
663(1)
9.2.2.5 Transmission System or Gear Box
663(1)
9.2.2.6 Other Components
663(1)
9.3 Challenges and Requirements of Electric Machines for EVs
663(4)
9.3.1 Challenges of Electric Machines for EVs
664(1)
9.3.2 Requirements of Electric Machines for EVs
664(3)
9.4 Commercially Available Electric Machines for EVs
667(2)
9.4.1 DC Motors
667(1)
9.4.2 Induction Motor
667(1)
9.4.3 Permanent Magnet Synchronous Motors (PMSM)
668(1)
9.4.4 Brushless DC Motors
668(1)
9.4.5 Switched Reluctance Motors (SRMs)
669(1)
9.5 Challenges and Requirements of Electric Machines for RES
669(2)
9.6 Commercially Available Electric Machines for RES
671(5)
9.6.1 DC Machine
671(1)
9.6.2 Induction Machines
671(3)
9.6.3 Synchronous Machines
674(1)
9.6.4 Advanced Machines for Renewable Energy
675(1)
9.7 Summary
676(3)
References
677(2)
10 Multiphase (More Than Three-Phase) Machines Concepts And Characteristics
679(66)
10.1 Preliminary Remarks
679(1)
10.2 Necessity of Multiphase Machines
679(12)
10.2.1 Evolution of Multiphase Machines
680(3)
10.2.2 Advantages of Multiphase Machines
683(1)
10.2.2.1 Better Space Harmonics Profile
683(1)
10.2.2.2 Better Torque Ripple Profile
684(2)
10.2.2.3 Improved Efficiency
686(1)
10.2.2.4 Fault Tolerant Capability
686(2)
10.2.2.5 Reduced Ratings of Semiconductor Switches and Better Power/Torque Distribution
688(1)
10.2.2.6 Torque Enhancement by Injecting Lower-Order Harmonics into Stator Currents
688(1)
10.2.3 Applications of Multiphase Machines
689(2)
10.3 Working Principle
691(1)
10.3.1 Multiphase Induction Machine
691(1)
10.3.2 Multiphase Synchronous Machine
691(1)
10.4 Stator-Winding Design
692(23)
10.4.1 Three-Phase Windings
695(1)
10.4.1.1 Single-Layer Full-Pitch Winding
695(3)
10.4.1.2 Single-Layer Short-Pitch Winding
698(1)
10.4.1.3 Double-Layer Full-Pitch Winding
699(1)
10.4.1.4 Double-Layer Short-Pitch Winding
699(2)
10.4.1.5 Fractional-Slot Winding
701(1)
10.4.2 Five-Phase Windings
701(5)
10.4.3 Six-Phase Windings
706(1)
10.4.3.1 Symmetrical Winding of Six-Phase Machine
707(3)
10.4.3.2 Asymmetrical Winding
710(1)
10.4.4 Nine-Phase Windings
710(5)
10.5 Mathematical Modelling of Multiphase Machines
715(10)
10.5.1 Mathematical Modelling of Multiphase Induction Machines in Original Phase-Variable Domain
715(3)
10.5.2 Transformation Matrix for Multiphase Machines
718(2)
10.5.3 Modelling of Multiphase Induction Machines in Arbitrary Reference Frames
720(2)
10.5.4 Commonly used Reference Frames
722(1)
10.5.5 Modelling of a Multiphase Synchronous Machine
723(2)
10.6 Vector Control Techniques for Multiphase Machines
725(6)
10.6.1 Indirect Field-Oriented Control or Vector-Control Techniques for Multiphase Induction Machines
726(4)
10.6.2 Vector Control for Multiphase Synchronous Machines
730(1)
10.7 Matlab/Simulink Model of Multiphase Machines
731(10)
10.7.1 Dynamic Model of the Nine-Phase Induction Machine
731(3)
10.7.2 Dynamic Model of the Nine-Phase Synchronous Machine
734(7)
10.8 Summary
741(4)
Problems
741(1)
References
742(3)
11 Numerical Simulation Of Electrical Machines Using The Finite Element Method
745(50)
11.1 Introduction
745(2)
11.2 Methods of Solving EM Analysis
747(11)
11.2.1 Analytical Techniques
749(1)
11.2.2 Numerical Techniques
750(2)
11.2.2.1 Finite Difference Method
752(1)
11.2.2.2 Finite Element Method
753(1)
11.2.2.3 Solution of Laplace Equation Using the Finite Element Method
753(5)
11.3 Formulation of 2-Dimensional and 3-Dimensional Analysis
758(7)
11.3.1 Maxwell Equations
759(1)
11.3.1.1 Gauss Law
759(1)
11.3.1.2 Gauss Law of Magnetism
760(1)
11.3.1.3 Ampere's Integral Law
761(1)
11.3.1.4 Faraday's Integral Law
761(1)
11.3.1.5 Differential Form of Maxwell Equations
761(2)
11.3.2 FEM Adaptive Meshing
763(1)
11.3.3 FEM Variation Principle
764(1)
11.4 Analysis and Implementation of FEM Machine Models
765(13)
11.4.1 RMxprt Design to Implement a Maxwell Model of Machine
765(11)
11.4.2 Power Converter Design in Simplorer
776(1)
11.4.3 Integration of Power Converter with a Maxwell Model for Testing Drive
776(2)
11.5 Example Model of Three-Phase IM in Ansys Maxwell 2D
778(15)
11.6 Summary
793(2)
References
793(2)
Index 795
Dr. Atif Iqbal is a Full Professor in the Department of Electrical Engineering, Qatar University. He is an IET Fellow (UK), IE Fellow (India), and Senior Member of the IEEE, as well as Associate Editor, IEEE Trans. on Industrial Electronics.

Dr. Shaikh Moinoddin is a Senior Member of the IEEE, India. He is former Assistant Professor in Electrical Engineering at the University of Polytechnic, Aligarh Muslim University, Aligarh, India.

Dr. Bhimireddy Prathap Reddy is currently working as a Post-doc at the Department of Electrical Engineering, Qatar University and is a member of the IEEE.