Muutke küpsiste eelistusi

E-raamat: Electrical Steels: Fundamentals and basic concepts, Volume 1

(Cardiff University, UK), , (Cardiff University, School of Engineering, Magnetics and Materials Group, UK), (Cardiff University, UK)
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 23-May-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785619717
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 234,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 23-May-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785619717
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Electrical steels are critical components of magnetic cores used in applications ranging from large rotating machines, including energy generating equipment, and transformers to small instrument transformers and harmonic filters. Presented over two volumes, this comprehensive handbook provides full coverage of the state-of-the-art in electrical steels.



Volume 1 covers the fundamentals and basic concepts of electrical steels. Topics covered include soft magnetic materials; basic magnetic concepts; magnetic domains, energy minimisation and magnetostriction; methods of observing magnetic domains in electrical steels; electromagnetic induction; fundamentals of a.c. signals; losses and eddy currents in soft magnetic materials; rotational magnetisation and losses; anisotropy of iron and its alloys; magnetic circuits; the effect of mechanical stress on loss, permeability and magnetostriction; magnetic measurements on electrical steels; background to modern electrical steels; production of electrical steels; amorphous and nano-crystalline soft magnetic materials; nickel-iron, cobalt-iron and aluminium-iron alloys; consolidated iron powder and ferrite cores; and temperature and irradiation dependence of magnetic and mechanical properties of soft magnetic materials.



The companion Volume 2 describes performance and outlines applications.
Acknowledgements xv
Preface xvii
Common Acronyms, Symbols And Abbreviations Used In the text xxiii
Introduction to Volume I xlv
About the authors xlvii
1 Soft magnetic material
1(1)
1.1 Range and application of commercial bulk magnetic materials
1(2)
1.2 Industrially important characteristics of soft magnetic materials
3(4)
1.3 Families of commercial soft magnetic materials
7(7)
1.4 Electrical steels
14(7)
1.5 Global impact of energy wastage in electrical steels
21(4)
References
23(2)
2 Basic magnetic concepts
25(1)
2.1 Magnetic fields, flux density and magnetisation
25(1)
2.1.1 Magnetic field (H)
25(1)
2.1.2 Magnetic dipole moment (m)
25(3)
2.1.3 Magnetic polarisation (J)
28(1)
2.1.4 Magnetic flux density (B)
29(3)
2.1.5 Permeability
32(2)
2.1.6 Relationships between H, B and M
34(5)
2.1.7 Demagnetising effects
39(2)
2.2 Units in magnetism
41(3)
2.3 Dimensional analysis of magnetic quantities
44(2)
2.4 Crystal planes and directions
46(5)
References
49(2)
3 Magnetic domains, energy minimisation and magnetostriction
51(1)
3.1 Magnetic dipole moments and domains
51(1)
3.2 Weiss theory and molecular field
52(2)
3.3 Minimisation of free energy
54(1)
3.4 Domain wall structure and motion
55(2)
3.5 Domain changes occurring during magnetisation
57(2)
3.6 Anisotropy energy
59(4)
3.6.1 Anisotropy energy in materials with cubic crystal structure (Ek)
59(4)
3.6.2 Uniaxial anisotropy energy (Eu)
63(1)
3.7 Magnetostatic energy (Ems)
63(1)
3.8 Fundamentals of magnetostriction
64(5)
3.8.1 Stress-strain relationship in soft magnetic materials
64(1)
3.8.2 Origin of magnetostriction in soft magnetic materials
65(4)
3.9 Magnetoelastic energy (Eme)
69(3)
3.10 Domain wall energy (Ew)
72(1)
3.11 Work and energy in the magnetisation process
73(1)
3.12 Static domain structure with minimum stored energy
74(2)
3.13 Domain changes occurring during magnetisation
76(3)
3.14 Energy (£/,) due to an externally applied field
79(1)
3.15 Effect of an applied field on a domain wall
80(1)
3.16 Magnetostriction in soft magnetic materials
81(7)
3.16.1 Saturation magnetostriction along principal crystal axes
81(1)
3.16.2 The special case of (110)[ 001] oriented silicon-iron
82(1)
3.16.3 Saturation magnetostriction of a polycrystalline material
83(1)
3.16.4 Variation of magnetostriction with flux density
84(4)
3.17 The Barkhausen effect
88(7)
References
92(3)
4 Methods of observing magnetic domains in electrical steels
95(1)
4.1 Introduction
95(1)
4.2 Powder techniques
96(3)
4.3 Optical methods of surface domain observation
99(5)
4.3.1 The magneto-optic effect
99(1)
4.3.2 Domain observation using the longitudinal KMO effect
100(2)
4.3.3 Observation of rapid domain wall motion using the KMO effect
102(2)
4.4 Magnetic force microscope
104(3)
4.5 Domain visualisation from surface field sensors
107(3)
4.6 Observation of sub-surface domain features
110(4)
4.6.1 Electron microscope techniques
110(2)
4.6.2 X-ray techniques
112(1)
4.6.3 Freeze-in techniques for observing sub-surface structures
112(2)
4.6.4 Visualisation of sub-surface domain structures using neutron mediation
114(1)
4.7 Use of magnetic bacteria for domain observation
114(1)
4.8 Magneto-optical indicator films
115(1)
4.9 Comparison of methods for observations on electrical steels
116(7)
References
118(5)
5 Electromagnetic induction
123(1)
5.1 Faraday's law
123(1)
5.2 Lenz's law
124(1)
5.3 Expressions for an induced e.m.f
125(2)
Reference
127(2)
6 Fundamentals of a.c. signals
129(1)
6.1 Waveform terminology
129(4)
6.2 Distortion factor
133(1)
6.3 Distorted voltages on power systems
134(1)
6.4 Distorted B or H waveforms due to non-linear magnetisation curves
135(1)
6.5 Effect of the electric circuit on waveform distortion
135(2)
6.6 General relationship between harmonics in B and H waveforms
137(1)
6.7 Calculation of flux density under distorted magnetisation conditions
138(3)
References
140(1)
7 Losses and eddy currents in soft magnetic materials
141(1)
7.1 Physical and engineering approaches to magnetic losses
141(1)
7.2 Energy dissipation derived from the area enclosed by a B-H loop
142(3)
7.3 Derivation of the dependence of loss on B and H using the Poynting vector theorem
145(2)
7.4 Hysteresis loss
147(1)
7.5 Eddy current generation in a rod of conducting material
148(1)
7.6 Eddy currents in a thin sheet
149(6)
7.6.1 Skin depth and equivalent depth of uniform magnetisation
153(2)
7.7 Classical eddy current loss
155(3)
7.7.1 Reduction of eddy current loss by use of laminations
156(2)
7.8 Separation of losses into eddy current and hysteresis components
158(5)
7.8.1 Hysteresis loss components
158(1)
7.8.2 Separation of total loss into two or three components
158(5)
7.9 Total loss within a sheet
163(3)
7.10 Total power loss of a strip expressed in terms of B and H
166(5)
References
168(3)
8 Rotational magnetisation and losses
171(2)
8.1 Vector representation of a pure rotating magnetic field
173(2)
8.2 Rotational flux density
175(2)
8.3 Torque curves and stored magnetocrystallme energy
177(5)
8.4 Rotational hysteresis loss
182(4)
8.5 Magnetic domain structures under rotational magnetisation
186(7)
8.6 Combined alternating, rotational and d.c. offset magnetisation
193(1)
8.6.1 Combined alternating and rotationa magnetisation
193(4)
8.6.2 Alternating magnetisation combined with d.c. offset fields
197(1)
8.7 Rotational loss at power frequency
198(1)
8.7.1 Distinction from rotational
198(1)
8.7.2 Total rotational loss in terms of B and H
199(3)
8.7.3 Loss separation under rotational magnetisation
202(6)
8.8 Magnetostriction under rotational magnetisation
208(5)
8.8.1 Multidirectional magnetostriction
208(2)
8.8.2 Simulation of rotational magnetostricton
210(3)
8.9 Three-dimensional magnetisation
213(8)
References
216(5)
9 Anisotropy of iron and its alloys
221(1)
9.1 Magnetisation at an angle to a preferred crystal direction
222(6)
9.2 Magnetisation at angles to an easy direction under a.c. magnetisation
228(2)
9.3 Effect of strip width on magnetisation direction in anisotropic material
230(5)
9.4 Effect of stacking method on apparent loss of anisotropic strips cut at angles to an easy axis
235(8)
References
239(4)
10 Magnetic circuits
243(1)
10.1 The basic magnetic circuit
243(5)
10.2 Magnetic reluctance
248(2)
10.3 Field and flux density distribution in a circular core
250(1)
10.4 Iron cored solenoid
251(2)
10.5 Flux density in a magnetic material measured by an enwrapping search coil
253(1)
10.6 Field and flux density at the interface between two media
254(2)
10.7 Forces between magnetised laminations
256(3)
References
257(2)
11 Effect of mechanical stress on loss, permeability and magnetostriction
259(1)
11.1 Effect of stress on simple magnetic domain structures
260(2)
11.2 Stress sensitivity derived from domain structures
262(6)
11.3 Effect of biaxial stress
268(3)
11.4 Stress sensitivity of GO steel
271(5)
11.5 Stress sensitivity of NO steel
276(4)
11.6 Effect of bending stress
280(4)
11.7 Effect of normal stress
284(3)
11.8 Effect of stress on components of loss
287(1)
11.9 Effects of building stresses in electrical machine cores
288(5)
11.9.1 Clamping stress
288(3)
11.9.2 Wound cores
291(1)
11.9.3 Stacked cores
291(2)
11.10 Slitting and punching stress in electrical steel
293(22)
11.10.1 Background
293(6)
11.10.2 Practical aspects of the cut edge region
299(3)
11.10.3 Other cutting methods
302(1)
11.10.4 Modelling the effect of the cut edge effect
303(1)
11.10.5 Shrink fitted stator cores
304(3)
References
307(8)
12 Magnetic measurements on electrical steels
315(1)
12.1 Introduction
315(1)
12.2 Effect of sample geometry (toroids, single strips, rings and single sheet)
316(7)
12.2.1 Epstein frame
316(1)
12.2.2 Single sheet tester
316(3)
12.2.3 Rings and toroids
319(4)
12.3 Sensing methods
323(2)
12.3.1 Flux density sensing
325(1)
123.2 Magnetic field measurement
325(5)
12.4 A.C. magnetic measurements of losses and permeability
330(16)
12.4.1 The wattmeter method
330(3)
12.4.2 Digital interpretation of the wattmeter method
333(4)
12.4.3 Localised measurements
337(5)
12.4.4 Measurements under simulated operational conditions
342(2)
12.4.5 D.C. biased a.c. measurements
344(2)
12.5 2D and rotational magnetic measurements
346(6)
12.5.1 Measurement principles
346(1)
12.5.2 Magnetisation systems
347(2)
12.5.3 Loss measurement
349(3)
12.6 Magnetostriction measurements
352(9)
12.6.1 Magnetostriction parameters
353(1)
12.6.2 Magnetostriction measurement transducers
353(6)
12.6.3 Rotational magnetostriction
359(2)
12.7 On-Line measurements
361(5)
12.7.1 Practical challenges
361(3)
12.7.2 Non-enwrapping systems
364(2)
12.8 The d.c. magnetic measurements
366(11)
12.8.1 Quasi-static measurements
367(4)
12.8.2 Point-by-point measurement
371(1)
12.8.3 Vibrating sample magnetometer
372(1)
12.8.4 Coercimeters
373(1)
12.8.5 Demagnetisation
374(3)
12.9 Surface insulation testing
377(3)
12.10 Barkhausen noise measurement
380(9)
References
381(8)
13 Background to modern electrical steels
389(1)
13.1 History and development of electrical steels
389(1)
13.1.1 Laminations
390(1)
13.1.2 Increased resistivity
391(3)
13.1.3 Purification
394(1)
13.1.4 Grain size
395(2)
13.1.5 Crystal orientation
397(1)
13.1.6 Coatings
397(1)
13.2 Metallurgical requirements and control
398(5)
13.2.1 Thickness
399(1)
13.2.2 Chemical composition
400(1)
13.2.3 Grain size
400(1)
13.2.4 Crystal orientation
400(1)
13.2.5 Coatings
401(1)
References
401(2)
14 Production of electrical steels
403(1)
14.1 Chemical composition
403(1)
14.2 Hot rolled coil production
404(1)
14.3 Cold mill processing
405(7)
14.3.1 Grain oriented electrical steel
405(5)
14.3.2 Non-oriented electrical steel
410(2)
14.4 Final property assessment
412(1)
14.5 Future development
412(5)
14.5.1 Grain oriented electrical steel
412(2)
14.5.2 Non-oriented electrical steels
414(1)
References
415(2)
15 Amorphous and nano-crystalline soft magnetic materials
417(1)
15.1 Amorphous materi als
417(1)
15.1.1 Production of amorphous magnetic materials
417(2)
15.1.2 Composition
419(1)
15.1.3 Magnetic structure
420(3)
15.1.4 Coatings and surface treatment
423(1)
15.1.5 Stress sensitivity
424(2)
15.1.6 Magnetostriction
426(1)
15.1.7 Consolidated Fe-based amorphous material (POWERCORE)
426(2)
15.1.8 Bulk amorphous material
428(2)
15.2 Nano-crystalline magnetic materials
430(5)
15.2.1 Production of nano-magnetic material
431(2)
15.2.2 Magnetic properties
433(1)
15.2.3 Coating and surface treatment
434(1)
15.2.4 Stress sensitivity
434(1)
15.3 General properties of amorphous and nano-materials
435(1)
15.3.1 Families of amorphous materials
435(1)
15.3.2 Commercial materials
435(1)
15.4 High silicon micro-crystalline ribbon
436(3)
15.5 Applications of amorphous and nano-crystalline ribbons
439(8)
References
441(6)
16 Nickel-iron, cobalt-iron and aluminium-iron alloys
447(1)
16.1 Introduction
447(1)
16.2 Iron, cobalt and nickel
447(1)
16.2.1 Iron
448(1)
16.2.2 Nickel
448(1)
16.2.3 Cobalt
449(1)
16.3 Nickel iron alloys
450(1)
16.4 Perminvar
450(7)
16.5 Cobalt iron alloys
457(10)
16.5.1 Stress dependence of magnetic properties of Co-Fe alloys
438(29)
16.6 Aluminium iron alloys
467(3)
16.7 Applications
470(3)
16.7.1 Ni-Fe alloys
471(1)
16.7.2 Co-Fe alloys
471(1)
References
472(1)
17 Consolidated ivon powder and ferrite cores
473(1)
17.1 Background
477(1)
17.2 Consolidated iron and SiFe powder cores
477(1)
17.2.1 Production
478(1)
17.2.2 SMC compositions for power applications
479(1)
17.2.3 Magnetic properties
479(3)
17.2.4 Loss components in SMCs
482(2)
17.2.5 Applications of iron-based SMCs
484(1)
17.2.6 Opportunities for future developments
485(1)
17.3 Soft ferrites
486(9)
17.3.1 Basic structure
486(1)
17.3.2 Production
486(1)
17.3.3 Magnetic properties
487(1)
17.3.4 Loss components in ferrite cores
488(3)
17.3.5 Applications
491(1)
References
491(4)
18 Temperature and irradiation dependence of magnetic and mechanical properties of soft magnetic materials
495(1)
18.1 Effects of temperature on structure insensitive magnetic properties
496(1)
18.1.1 Saturation magnetisation Ms
496(1)
18.1.2 Resistivity
497(2)
18.1.3 Magnetociystalline anisotropy constants
499(2)
18.1.4 Magnetostriction constants
501(1)
18.2 Effect of temperature on permeability, coercivity and losses
502(1)
18.3 The d.c. and a.c. properties of silicon steels at elevated temperatures
503(5)
18.4 Temperature dependencies of magnetic properties of various material
508(4)
18.5 Modelling high temperature performance
512(2)
18.6 Magnetic properties at cryogenic temperatures
514(1)
18.7 Effect of non-uniform temperature gradients in magnetic core laminations
515(1)
18.8 Effect of irradiation on soft magnetic materials
516(5)
References
517(4)
Index 521
Anthony Moses is Emeritus Professor of Magnetics at Cardiff University, UK where he was previously Director of the Wolfson Centre for Magnetics. He has overseen numerous research projects and supervised over 100 postgraduate projects focused on the properties, characterisation and applications of soft magnetic materials.



Philip Anderson is a Senior Lecturer in the Magnetics and Materials Group at Cardiff University's School of Engineering, and is a member of the British and International Standards Committees on Magnetic Alloys and Steels.



Keith Jenkins worked at British Steel Electrical Steels Research Department, Orb Works for 35 years in various technical and research roles and recently became an honorary visiting professor at Cardiff University.



Hugh Stanbury was Technical Manager at Orb Electrical Steels, Cogent Power Ltd. He is Chair of the British Standards Institution Technical Committee for Magnetic Alloys and Steels and is a former Chair of the International Electrotechnical Commission Technical Committee 68 for Magnetic Alloys and Steels.