Muutke küpsiste eelistusi

E-raamat: Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB(R)

  • Formaat: 350 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819279
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 350 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819279
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics.





Special techniques in MATLAB (R) are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell's equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial.





The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.





Visit https://empossible.net/fdfdbook/ to access the book website.

Visit https://raymondrumpf.com/ for Raymond C. Rumpf's personal webpage.
Foreword xiii
Preface xv
Acknowledgments xvii
Introduction xix
References xxii
Chapter 1 MATLAB Preliminaries
1(32)
1.1 Basic Structure of an FDFD Program in MATLAB
1(2)
1.1.1 MATLAB Code for Ideal Structure of a Program
2(1)
1.2 MATLAB and Linear Algebra
3(5)
1.2.1 Special Matrices
6(2)
1.2.2 Matrix Algebra
8(1)
1.3 Setting Up a Grid in MATLAB
8(7)
1.3.1 MATLAB Array Indexing
8(2)
1.3.2 Parameters Describing a Grid in MATLAB
10(1)
1.3.3 Calculating the Grid Parameters
11(4)
1.4 Building Geometries onto Grids
15(10)
1.4.1 Adding Rectangles to a Grid
16(1)
1.4.2 The Centering Algorithm
17(2)
1.4.3 The Meshgrid
19(1)
1.4.4 Adding Circles and Ellipses to a Grid
20(2)
1.4.5 Grid Rotation
22(1)
1.4.6 Boolean Operations
23(2)
1.5 Three-Dimensional Grids
25(2)
1.6 Visualization Techniques
27(6)
1.6.1 Visualizing Data on Grids
27(2)
1.6.2 Visualizing Three-Dimensional Data
29(2)
1.6.3 Visualizing Complex Data
31(1)
1.6.4 Animating the Fields Calculated by FDFD
32(1)
Reference
32(1)
Chapter 2 Electromagnetic Preliminaries
33(38)
2.1 Maxwell's Equations
33(4)
2.2 The Constitutive Parameters
37(5)
2.2.1 Anisotropy, Tensors, and Rotation Matrices
37(2)
2.2.2 Rotation Matrices and Tensor Rotation
39(3)
2.3 Expansion of Maxwell's Curl Equations in Cartesian Coordinates
42(1)
2.4 The Electromagnetic Wave Equation
43(2)
2.5 Electromagnetic Waves in LHI Media
45(4)
2.5.1 Wave Polarization
46(3)
2.6 The Dispersion Relation for LHI Media
49(1)
2.7 Scattering at an Interface
49(6)
2.7.1 Reflectance and Transmittance
52(3)
2.8 What is a Two-Dimensional Simulation?
55(1)
2.9 Diffraction from Gratings
56(6)
2.9.1 The Grating Equation
57(2)
2.9.2 Diffraction Efficiency
59(1)
2.9.3 Generalization to Crossed Gratings
60(2)
2.10 Waveguides and Transmission Lines
62(6)
2.10.1 Waveguide Modes and Parameters
63(3)
2.10.2 Transmission Line Parameters
66(2)
2.11 Scalability of Maxwell's Equations
68(1)
2.12 Numerical Solution to Maxwell's Equations
69(2)
References
70(1)
Chapter 3 The Finite-Difference Method
71(24)
3.1 Introduction
71(1)
3.2 Finite-Difference Approximations
72(8)
3.2.1 Deriving Expressions for Finite-Difference Approximations
73(3)
3.2.2 Example #1---Interpolations and Derivatives from Three Points
76(2)
3.2.3 Example #2---Interpolations and Derivatives from Two Points
78(1)
3.2.4 Example #3---Interpolations and Derivatives from Four Points
79(1)
3.3 Numerical Differentiation
80(1)
3.4 Numerical Boundary Conditions
81(1)
3.4.1 Dirichlet Boundary Conditions
81(1)
3.4.2 Periodic Boundary Conditions
82(1)
3.5 Derivative Matrices
82(3)
3.6 Finite-Difference Approximation of Differential Equations
85(2)
3.7 Solving Matrix Differential Equations
87(2)
3.7.1 Example---Solving a Single-Variable Differential Equation
87(2)
3.8 Multiple Variables and Staggered Grids
89(6)
3.8.1 Example---Solving a Multivariable Problem
92(2)
References
94(1)
Chapter 4 Finite-Difference Approximation of Maxwell's Equations
95(46)
4.1 Introduction to the Yee Grid Scheme
95(2)
4.2 Preparing Maxwell's Equations for FDFD Analysis
97(2)
4.3 Finite-Difference Approximation of Maxwell's Curl Equations
99(4)
4.4 Finite-Difference Equations for Two-Dimensional FDFD
103(4)
4.4.1 Derivation of E Mode Equations When Frequency Is Not Known
105(1)
4.4.2 Derivation of H Mode Equations When Frequency Is Not Known
105(1)
4.4.3 Derivation of E Mode Equations When Frequency Is Known
106(1)
4.4.4 Derivation of H Mode Equations When Frequency Is Known
106(1)
4.5 Derivative Matrices for Two-Dimensional FDFD
107(13)
4.5.1 Derivative Matrices Incorporating Dirichlet Boundary Conditions
108(4)
4.5.2 Periodic Boundary Conditions
112(3)
4.5.3 Derivative Matrices Incorporating Periodic Boundary Conditions
115(4)
4.5.4 Relationship Between the Derivative Matrices
119(1)
4.6 Derivative Matrices for Three-Dimensional FDFD
120(4)
4.6.1 Relationship Between the Derivative Matrices
123(1)
4.7 Programming the yeeder2d() Function in MATLAB
124(4)
4.7.1 Using the yeeder2d() Function
126(2)
4.8 Programming the yeeder3d() Function in MATLAB
128(3)
4.8.1 Using the yeeder3d() Function
129(2)
4.9 The 2x Grid Technique
131(3)
4.10 Numerical Dispersion
134(7)
References
139(2)
Chapter 5 The Perfectly Matched Layer Absorbing Boundary
141(20)
5.1 The Absorbing Boundary
141(2)
5.2 Derivation of the UPML Absorbing Boundary
143(3)
5.3 Incorporating the UPML into Maxwell's Equations
146(1)
5.4 Calculating the UPML Parameters
147(2)
5.5 Implementation of the UPML in MATLAB
149(4)
5.5.1 Using the addupml2d() Function
150(3)
5.6 The SCPML Absorbing Boundary
153(8)
5.6.1 MATLAB Implementation of calcpml3d()
155(1)
5.6.2 Using the calcpml3d() Function
155(4)
References
159(2)
Chapter 6 FDFD for Calculating Guided Modes
161(38)
6.1 Formulation for Rigorous Hybrid Mode Calculation
161(5)
6.2 Formulation for Rigorous Slab Waveguide Mode Calculation
166(5)
6.2.1 Formulation of E Mode Slab Waveguide Analysis
167(1)
6.2.2 Formulation of H Mode Slab Waveguide Analysis
168(1)
6.2.3 Formulations for Slab Waveguides in Other Orientations
168(1)
6.2.4 The Effective Index Method
169(2)
6.3 Implementation of Waveguide Mode Calculations
171(21)
6.3.1 MATLAB Implementation of Rib Waveguide Analysis
172(7)
6.3.2 MATLAB Implementation of Slab Waveguide Analysis
179(6)
6.3.3 Animating the Slab Waveguide Mode
185(2)
6.3.4 Convergence
187(1)
6.3.5 MATLAB Implementation for Calculating SPPs
188(4)
6.4 Implementation of Transmission Line Analysis
192(7)
References
197(2)
Chapter 7 FDFD for Calculating Photonic Bands
199(16)
7.1 Photonic Bands for Rectangular Lattices
199(2)
7.2 Formulation for Rectangular Lattices
201(2)
7.3 Implementation of Photonic Band Calculation
203(12)
7.3.1 Description of MATLAB Code for Calculating Photonic Band Diagrams
205(5)
7.3.2 Description of MATLAB Code for Calculating IFCs
210(4)
References
214(1)
Chapter 8 FDFD for Scattering Analysis
215(40)
8.1 Formulation of FDFD for Scattering Analysis
215(2)
8.1.1 Matrix Wave Equations for Two-Dimensional Analysis
215(2)
8.2 Incorporating Sources
217(9)
8.2.1 Derivation of the QAAQ Equation
218(2)
8.2.2 Calculating the Source Field FSRC (x,y)
220(2)
8.2.3 Calculating the SF Masking Matrix Q
222(2)
8.2.4 Compensating for Numerical Dispersion
224(2)
8.3 Calculating Reflection and Transmission for Periodic Structures
226(2)
8.4 Implementation of the FDFD Method for Scattering Analysis
228(27)
8.4.1 Standard Sequence of Simulations for a Newly Written FDFD Code
231(2)
8.4.2 FDFD Analysis of a Sawtooth Diffraction Grating
233(6)
8.4.3 FDFD Analysis of a Self-Collimating Photonic Crystal
239(7)
8.4.4 FDFD Analysis of an OIC Directional Coupler
246(6)
References
252(3)
Chapter 9 Parameter Sweeps with FDFD
255(14)
9.1 Introduction to Parameter Sweeps
255(2)
9.2 Modifying FDFD for Parameter Sweeps
257(9)
9.2.1 Generic MATLAB Function to Simulate Periodic Structures
258(2)
9.2.2 Main MATLAB Program to Simulate the GMRF
260(2)
9.2.3 Main MATLAB Programs to Analyze a Metal Polarizer
262(4)
9.3 Identifying Common Problems in FDFD
266(3)
References
267(2)
Chapter 10 FDFD Analysis of Three-Dimensional and Anisotropic Devices
269(36)
10.1 Formulation of Three-Dimensional FDFD
269(8)
10.1.1 Finite-Difference Approximation of Maxwell's Curl Equations
270(3)
10.1.2 Maxwell's Equations in Matrix Form
273(1)
10.1.3 Interpolation Matrices
274(1)
10.1.4 Three-Dimensional Matrix Wave Equation
275(2)
10.2 Incorporating Sources into Three-Dimensional FDFD
277(1)
10.3 Iterative Solution for FDFD
278(2)
10.4 Calculating Reflection and Transmission for Doubly Periodic Structures
280(2)
10.5 Implementation of Three-Dimensional FDFD and Examples
282(23)
10.5.1 Standard Sequence of Simulations for a Newly Written Three-Dimensional FDFD Code
282(3)
10.5.2 Generic Three-Dimensional FDFD Function to Simulate Periodic Structures
285(2)
10.5.3 Simulation of a Crossed-Grating GMRF
287(3)
10.5.4 Simulation of a Frequency Selective Surface
290(4)
10.5.5 Parameter Retrieval for a Left-Handed Metamaterial
294(6)
10.5.6 Simulation of an Invisibility Cloak
300(3)
References
303(2)
APPENDIX A
A.1 Best Practices for Building Devices onto Yee Grids
305(3)
A.2 Method Summaries
308(5)
List of Acronyms and Abbreviations 313(2)
About the Author 315(2)
Index 317