Muutke küpsiste eelistusi

E-raamat: Electromagnetic Simulation Using the FDTD Method with Python

(University of Idaho), (University of Idaho)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 04-Sep-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119565840
  • Formaat - EPUB+DRM
  • Hind: 124,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 04-Sep-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119565840

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations

This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community. 

Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered in include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning.

Electromagnetic Simulation Using the FDTD Method with Python: 

  • Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashion
  • Includes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of Python
  • Covers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform
  • Provides Python simulation programs on an accompanying website

An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python will also benefit scientists and engineers interested in the subject.

About the Authors ix
Preface xi
Guide to the Book xiii
1 One-Dimensional Simulation with the FDTD Method
1(24)
1.1 One-Dimensional Free-Space Simulation
1(4)
1.2 Stability and the FDTD Method
5(1)
1.3 The Absorbing Boundary Condition in One Dimension
6(1)
1.4 Propagation in a Dielectric Medium
7(2)
1.5 Simulating Different Sources
9(1)
1.6 Determining Cell Size
10(1)
1.7 Propagation in a Lossy Dielectric Medium
11(3)
1.A Appendix
14(11)
References
15(10)
2 More on One-Dimensional Simulation
25(34)
2.1 Reformulation Using the Flux Density
25(3)
2.2 Calculating the Frequency Domain Output
28(3)
2.3 Frequency-Dependent Media
31(6)
2.3.1 Auxiliary Differential Equation Method
35(2)
2.4 Formulation Using Z Transforms
37(4)
2.4.1 Simulation of Unmagnetized Plasma
38(3)
2.5 Formulating a Lorentz Medium
41(18)
2.5.1 Simulation of Human Muscle Tissue
45(2)
References
47(12)
3 Two-Dimensional Simulation
59(40)
3.1 FDTD in Two Dimensions
59(3)
3.2 The Perfectly Matched Layer (PML)
62(10)
3.3 Total/Scattered Field Formulation
72(27)
3.3.1 A Plane Wave Impinging on a Dielectric Cylinder
74(2)
3.3.2 Fourier Analysis
76(2)
References
78(21)
4 Three-Dimensional Simulation
99(30)
4.1 Free-Space Simulation
99(4)
4.2 The PML in Three Dimensions
103(2)
4.3 Total/Scattered Field Formulation in Three Dimensions
105(24)
4.3.1 A Plane Wave Impinging on a Dielectric Sphere
107(4)
References
111(18)
5 Advanced Python Features
129(30)
5.1 Classes
129(4)
5.1.1 Named Tuples
131(2)
5.2 Program Structure
133(3)
5.2.1 Code Repetition
133(2)
5.2.2 Overall Structure
135(1)
5.3 Interactive Widgets
136(23)
6 Deep Regional Hyperthermia Treatment Planning
159(12)
6.1 Introduction
160(1)
6.2 FDTD Simulation of the Sigma 60
161(4)
6.2.1 Simulation of the Applicator
161(2)
6.2.2 Simulation of the Patient Model
163(2)
6.3 Simulation Procedure
165(3)
6.4 Discussion
168(3)
References
170(1)
Appendix A The Z Transform 171(12)
Appendix B Analytic Solution to Calculating the Electric Field 183(12)
Index 195
Jennifer E. Houle is the Vice President for Research at Moscow-Berlin Simulations. She also worked as a Senior Product Engineer at Micron Technology. She has a Masters degree in Electrical Engineering from the University of Idaho. Her work has been published in the International Journal of Magnetics and Electromagnetism and the Symposium on Nonlinear Optics and Sum Rules, and her research was presented at the 32nd Annual Meeting of the European Hyperthermic Oncology Society.

Dennis M. Sullivan, PhD, is Professor of Electrical and Computer Engineering at the University of Idaho. His research interests are electromagnetic and quantum simulation, and include hyperthermia cancer therapy, nonlinear optical simulation, and quantum semiconductor simulation. In 2013 he was made a fellow of the Institute of Electrical and Electronic Engineers. He published the first edition of Electromagnetic Simulation Using the FDTD Method with Wiley in 2001 and the second edition in 2013.