Muutke küpsiste eelistusi

E-raamat: Electron Magnetic Resonance: Applications in Physical Sciences and Biology

Edited by (Associate Professor and Head, Department of Physics, Ewing Christian College, Prayagraj, India)
  • Formaat - EPUB+DRM
  • Hind: 225,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Electron Magnetic Resonance: Applications in Physical Sciences and Biology, Volume 50 describes the principles and recent trends in different experimental methods of Electron Magnetic Resonance (EMR) spectroscopy. In addition to principles, experimental methods and applications, each chapter contains a complete list of references that guide the reader to relevant literature. The book is intended for both skilled and novice researchers in academia, professional fields, scientists and students without any geographical limitations. It is useful for both beginners and experts in the field of Electron Spin Resonance who are looking for recent experimental methods of EMR techniques.

  • Features a bottoms-up approach, with each chapter opening with basic theory and principles that are followed by recent trends and applications
  • Focuses on applications and data interpretation, thus avoiding extensive use of mathematics
  • Includes content from scientists working with lead manufacturers of EMR machines
  • Provides thorough comparisons of the features of each EMR machine
  • Written by experts in ESR spectroscopy from all over the world, giving the content global appeal
List of Contributors
xi
Volumes in Series xiii
Preface xvii
1 Mn2+ EPR spectroscopy for the provenance study of natural carbonates
1(20)
Octavian G. Duliu
Vasile Bercu
Daniel C. Negut
1.1 Introduction
1(2)
1.2 Provenance and authentication studies of the marble work of arts
3(3)
1.3 EPR spectrum of natural carbonates
6(1)
1.4 EPR in the provenance studies of work of art made of natural carbonates
6(4)
1.5 Conclusions
10(1)
Appendix
10(5)
Acknowledgments
15(1)
References
15(4)
Further reading
19(2)
2 F, MR in geology/mineralogy
21(26)
Bernadeta Dobosz
Ryszard Krzyminiewski
2.1 Introduction
21(2)
2.2 Methodology
23(4)
2.2.1 Samples preparation
23(1)
2.2.2 ESR measurement
23(1)
2.2.3 ESR dating potential
23(2)
2.2.4 Potential problems
25(1)
2.2.5 Additive dose (AD) method
25(2)
2.3 Chosen examples of ESR application in geology, archeology, and mineralogy
27(12)
2.3.1 ESR of corals
27(1)
2.3.2 ESR of mollusk shells
27(1)
2.3.3 Clays and archeological ceramics
28(2)
2.3.4 ESR of flints
30(1)
2.3.5 ESR of quartz
31(1)
2.3.6 ESR of faults activity
31(1)
2.3.7 ESR of foraminifera
32(1)
2.3.8 ESR of cave dripstones
32(1)
2.3.9 ESR of lime mortars
33(2)
2.3.10 ESR of tooth enamel
35(2)
2.3.11 ESR of apatites
37(1)
2.3.12 ESR of marbles
37(2)
References
39(8)
3 EPR imaging characterization of the pigment-based organic radicals in plant seeds
47(16)
Kouichi Nakagawa
3.1 Introduction
47(2)
3.2 Experimental section
49(1)
3.2.1 Samples
49(1)
3.2.2 Electron paramagnetic resonance (EPR)
50(1)
3.3 EPR results and analyses
50(6)
3.3.1 Apple seeds
50(5)
3.3.2 Soybean seeds
55(1)
3.4 EPR imaging (EPRI) results and analyses
56(3)
3.4.1 Apple seeds
56(2)
3.4.2 Soybean seeds
58(1)
3.5 Summary
59(1)
3.5.1 Apple seeds
59(1)
3.5.2 Soybean seeds
60(1)
Acknowledgment
60(1)
References
60(3)
4 X-band EPR and EPR imaging investigation of sucrose radicals
63(20)
Kouichi Nakagawa
4.1 Introduction
63(2)
4.2 Materials and methods
65(4)
4.2.1 Samples
65(1)
4.2.2 Irradiation
65(1)
4.2.3 Electron paramagnetic resonance (EPR)
66(1)
4.2.4 Electron paramagnetic resonance imaging (EPRI)
67(2)
4.3 Results of EPR
69(3)
4.3.1 Sucrose and alanine irradiated with X-rays and particles
69(3)
4.4 Analyses of EPR and EPR imaging (EPRI)
72(7)
4.4.1 Analyses of sucrose radical
72(1)
4.4.2 Irradiation induced radical sites
73(2)
4.4.3 Radical-production cross section
75(2)
4.4.4 Analyses of 2D EPRI
77(2)
4.5 Summary
79(1)
Acknowledgment
79(1)
References
80(3)
5 EPR and double resonances in study of diamonds and nanodiamonds
83(32)
Boris Yavkin
Marat Gafurov
Mikhail Volodin
Georgy Mamin
Sergei B. Orlinskii
5.1 Introduction
83(2)
5.2 Diamonds: Structure, synthesis, and defects
85(4)
5.3 NV centers in macroscopic diamonds
89(10)
5.3.1 Typical EPR spectra
89(1)
5.3.2 Optical spin polarization effect
90(3)
5.3.3 Hyperfine and quadrupole coupling with 14N nucleus
93(4)
5.3.4 Temperature dependence of quadrupole interaction constant
97(2)
5.3.5 Spin relaxation in NV centers
99(1)
5.4 Surface and core centers in nanodiamonds
99(10)
5.4.1 EPR spectroscopy studies
99(6)
5.4.2 ENDOR studies of ND surface functionalization
105(4)
5.5 Conclusion
109(1)
Acknowledgments
110(1)
References
110(5)
6 Aspects of the EPR study on mineralized tissues as related to medicine, dosimetry, and dating
115(14)
Grzegorz Piotr Guzik
Waclaw Stachowicz
Jacek Michalik
6.1 The beginnings
115(2)
6.2 Identity of the stable EPR signal in irradiated bone tissue
117(1)
6.3 Application of stable EPR signal in mineralized tissues exposed to radiation
118(1)
6.4 Application of stable radicals produced in mineralized tissues by ionizing radiation in biomedical research
119(1)
6.5 Remodeling of radiation-sterilized bone grafts
120(1)
6.6 Crystallinity of bone mineral
120(1)
6.7 Bone dosimetry
121(2)
6.8 Archeological application
123(1)
6.9 Detection of irradiated food
123(1)
6.10 Resume
123(1)
References
124(2)
Further reading
126(3)
7 EPR studies of bionanomaterials
129(32)
Tatyana I. Smirnova
Alex I. Smirnov
7.1 Introduction
129(2)
7.2 Surface-mediated production of free radicals and radical scavenging properties of nanomaterials
131(3)
7.3 Spin-labeling EPR methods for characterizing ligand-functionalized nanoparticles and hybrid nanostructures
134(11)
7.4 Spin-labeling EPR methods in studies of nanoscale confinements and nanoporous and mesoporous materials
145(2)
7.5 Nanoporous and mesoporous materials as tools to study biomacromolecules by EPR and NMR
147(4)
7.6 Conclusions
151(1)
Acknowledgments
152(1)
References
152(9)
8 EPR in glass ceramics
161(30)
Andris Antuzevics
8.1 Introduction
161(1)
8.2 Preparation and characterization of glass ceramics
162(4)
8.3 EPR investigations of glass ceramics
166(19)
8.3.1 General aspects of EPR spectroscopy
166(3)
8.3.2 Mn2+
169(1)
8.3.3 Cu2+
170(2)
8.3.4 Cr3+
172(1)
8.3.5 Gd3+
173(5)
8.3.6 Eu2+
178(3)
8.3.7 Er3+
181(1)
8.3.8 Yb3+
182(1)
8.3.9 Other paramagnetic centers
183(2)
Acknowledgments
185(1)
References
185(6)
9 Applications of the spin-trapping technique in the study of the formation of free radicals in the biodiesel degradation process
191(12)
Ana Carolina Gomes Mantovani
Bruno Luiz Santana Vicentin
Daniel Farinha Valezi
Eduardo Di Mauro
9.1 Introduction
191(4)
9.1.1 Biodiesel
192(3)
9.2 Materials and methods
195(1)
9.2.1 Biodiesel samples
195(1)
9.2.2 Spin-trapping incubation
195(1)
9.2.3 Species quantification
195(1)
9.2.4 Oxidative stability
195(1)
9.2.5 EMR analysis
195(1)
9.3 Results and discussion
195(5)
9.3.1 Experiments at room temperature
195(2)
9.3.2 Experiments at 70°C
197(3)
9.4 Conclusions
200(1)
References
201(2)
10 Applications of electron magnetic resonance in the study of soils, minerals, and iron oxides
203(16)
Daniel Farinha Valezi
Bruno Luiz Santana Vicentin
Ana Carolina Gomes Mantovani
Eduardo Di Mauro
10.1 Introduction
203(1)
10.2 Samples and experimental details
204(1)
10.3 Characterization of soils, minerals, and iron oxides using EMR
205(10)
10.3.1 EMR applied in soil samples fractionated by size and color
205(4)
10.3.2 EMR applied in limestone samples
209(2)
10.3.3 EMR applied on the study of magnetic transition of goethite
211(4)
10.4 Conclusions
215(1)
References
215(4)
Index 219
Dr. Shukla has obtained his B.Sc., M.Sc. and D. Phil. degrees from University of Allahabad, India. During his doctoral work he has focused on the Electron Spin Resonance spectroscopy and optical absorption spectroscopy to study the transition ion doped single crystals. In addition to his exposure to the available CW-ESR spectrometers at leading institutes of his own country, he is enriched with hands on experience with modern CW and pulsed ESR spectrometers at several leading and University of St. Andrews, Scotland; and Kazan State University, Kazan. He has shared his research in many international events focused on Electron Spin Resonance Spectroscopy, organized in U.S.A., U.K., Germany, Spain, and Russia. Dr. Shukla has a good number publications to his credit in this filed in peer reviewed journals and books. Dr. Shukla is currently serving as Physics faculty at Ewing Christian College, Allahabad, India.