Muutke küpsiste eelistusi

E-raamat: Electronic Signals and Systems: Analysis, Design and Applications

(Memorial University of Newfoundland, Canada), (Aalborg University, Denmark), (The University of Lahore, Pakistan), (The University of Oklahoma, USA)
  • Formaat - EPUB+DRM
  • Hind: 100,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Book is intended for a course on signals and systems at the senior undergraduate level. The authors consider all therequirements and tools used in analysis and design of discrete time systems forfilter design and signal processing.

The subject of Signals and Systems is enormously complex, involving many concepts such as signals, mathematics and filter design that are woven together in an intricate manner. To cope with this scope and complexity, many Signals and Systems texts are often organized around the "numerical examples" of a system. With such organization, students can see through the complexity of Signals and Systems, they can learn about the distinct concepts and protocols in one part of the communication system while seeing the big picture of how all parts fit together. From a pedagogical perspective, our personal experience has been that such approach indeed works well. Based on the Authors extensive experience of teaching and research, the book is written with such a reader in mind. The Book is intended for a course on signals & systems at the senior undergraduate level and above. The authors consider all the requirements and tools used in analysis and design of discrete time systems for filter design and signal processing.

Key features of the International Edition:

  • The extensive use of MATLAB based examples to illustrate how to solve the signals & systems problems. The textbook includes a wealth of problems with solutions.
  • Worked-out examples have been included to explain new and difficult concepts and to expose the reader to real-life signal processing problems.
The inclusion of FIR and IIR filter design further enriches the contents of the book.
Preface xv
List of Contributors
xix
List of Figures
xxiii
List of Tables
xxix
List of Abbreviations
xxxi
1 Signals
1(68)
1.1 Introduction
1(1)
1.2 CT Signals
2(3)
1.2.1 Frequency-CT Sinusoid Signals
2(1)
1.2.2 Periodic and Aperiodic Signals
2(3)
1.3 Manipulation of CT Signals
5(13)
1.3.1 Reflection/Folding/Flipping
5(1)
1.3.2 Shifting (Advanced and Delayed)
6(1)
1.3.3 Scaling (Time and Magnitude)
6(1)
1.3.4 Rule for Reflection, Shifting and Time Scaling
7(6)
1.3.5 Use of Step and Ramp Function in Signal Processing
13(3)
1.3.6 Even and Odd Signals
16(2)
1.4 DT Signals
18(2)
1.4.1 Continuous Versus Discrete Signals
18(1)
1.4.2 Concept of Frequency -- DT Signals
18(2)
1.4.3 Time Domain and Frequency Domain
20(1)
1.5 AD and DA Conversion
20(4)
1.5.1 Processing Steps for AD Conversion
21(1)
1.5.1.1 Sample and hold
21(1)
1.5.1.2 Quantization
21(1)
1.5.1.3 Coding
21(1)
1.5.2 Sampling of Analogue Signals
22(2)
1.6 The Sampling Theorem
24(4)
1.7 Quantization Error
28(2)
1.8 Representing DT Signal
30(1)
1.8.1 Graphical Representation
30(1)
1.8.2 Functional Representation
31(1)
1.8.3 Sequence Representation
31(1)
1.8.4 Tabular Representation
31(1)
1.9 Elementary DT Signals
31(2)
1.9.1 Unit Impulse
31(1)
1.9.2 Unit Step Signal
31(1)
1.9.3 Unit Ramp Signal
32(1)
1.9.4 Exponential Signal
32(1)
1.9.5 Sinusoidal Signal
33(1)
1.10 Simple Manipulations of DT Signal
33(4)
1.10.1 Reflection/Folding/Flipping
33(1)
1.10.2 Shifting (Advanced and Delayed)
34(1)
1.10.3 Scaling (Time and Magnitude)
34(1)
1.10.4 Addition and Multiplication
35(1)
1.10.5 Even and Odd Signals
36(1)
1.11 Energy and Power Signals for CT and DT Signals
37(5)
1.12 Problems and Solutions
42(27)
2 Differential Equations
69(16)
2.1 Introduction
69(3)
2.2 Determination of the Transient Response, θt
72(4)
2.3 Determination of the Steady-State Response, θss
76(7)
2.3.1 Zero-or Constant-Driving Function
76(2)
2.3.2 Ramp- or Acceleration-Driving Function
78(2)
2.3.3 Exponential-Driving Function
80(3)
2.3.4 Sinusoidal-Driving Function
83(1)
2.4 Problems and Solutions
83(2)
3 Laplace Transform
85(20)
3.1 Introduction
85(7)
3.2 Theorems of Laplace Transform
92(3)
3.3 Differential Equations and Transfer Functions
95(4)
3.4 Problems and Solutions
99(6)
4 System Description
105(54)
4.1 System
105(1)
4.2 Properties of Continuous-time System
105(10)
4.2.1 Systems with Memory
106(1)
4.2.2 Invertibility
106(2)
4.2.3 Causality
108(1)
4.2.4 Stability
109(2)
4.2.5 Time Invariance
111(2)
4.2.6 Linearity
113(2)
4.3 Discrete-Time Systems
115(1)
4.3.1 System's Representation
115(1)
4.4 Symbol Used to Represent DTS
116(2)
4.4.1 An Adder
116(1)
4.4.2 A Constant Multiplier
116(1)
4.4.3 A Signal Multiplier
116(1)
4.4.4 Unit Delay Element
117(1)
4.4.5 Unit Advanced Element
117(1)
4.5 Properties of DTS
118(11)
4.5.1 Static Versus Dynamic Systems
118(1)
4.5.2 Time Invariant Versus Time-Variant System
119(3)
4.5.3 Linear Versus Non-Linear System
122(1)
4.5.3.1 Linear system
122(1)
4.5.3.2 Non-linear system
123(4)
4.5.4 Causal vs Non-Causal System
127(1)
4.5.5 Stable Versus Unstable System
128(1)
4.6 Systems' Mathematical Model
129(12)
4.6.1 Electrical Systems
129(1)
4.6.1.1 The resistor R
129(1)
4.6.1.2 The inductor L
130(1)
4.6.1.3 The capacitor C
130(4)
4.6.2 Mechanical Translational Systems
134(1)
4.6.2.1 The mass element
134(1)
4.6.2.2 The damper element
134(1)
4.6.2.3 The spring element
134(3)
4.6.3 Mechanical Rotational System
137(1)
4.6.4 Electromechanical Systems
138(1)
4.6.4.1 DC generator
138(1)
4.6.4.2 Servomotor
139(2)
4.7 Problems and Solutions
141(18)
5 Control System Response
159(90)
5.1 Convolution
159(2)
5.2 Convolution Integral Formula
161(10)
5.3 Time Response of First-Order Systems
171(6)
5.3.1 System Step Response
172(3)
5.3.2 System dc Gain
175(1)
5.3.3 System Ramp Response
175(2)
5.4 Time Response of Second-Order Systems
177(3)
5.5 Time Response Specifications in Design
180(6)
5.5.1 Time Response and Pole Locations
184(2)
5.6 Frequency Response of Systems
186(7)
5.6.1 First-Order Systems
188(2)
5.6.2 Second-Order System
190(2)
5.6.3 System dc Gain
192(1)
5.7 Problems and Solutions
193(56)
6 Control System's Stability
249(34)
6.1 Introduction
249(2)
6.2 Routh--Hurwitz Stability Criterion
251(11)
6.2.1 Case I
253(1)
6.2.2 Case II
254(2)
6.2.3 Case III
256(6)
6.3 Problems and Solutions
262(21)
7 Fourier Series
283(46)
7.1 Periodic Function and Fourier Synthesis
283(1)
7.2 Constructing a Waveform with Sine Waves
283(1)
7.3 Constructing a Waveform with Cosine Waves
284(2)
7.4 Constructing a Waveform with Cosine and Sine Waves
286(1)
7.5 Constructing a Waveform with Both Sine and Cosine Waves and a DC Component
287(1)
7.6 Trigonometric From of the Fourier Series
287(26)
7.6.1 Use of Symmetry
295(13)
7.6.2 Complex Form of the Fourier Series
308(5)
7.7 Discrete Time Fourier Series of Periodic Signals
313(1)
7.8 Gibbs' Phenomenon
314(1)
7.9 Problems and Solutions
315(14)
8 Fourier Transform
329(36)
8.1 Introduction
329(1)
8.2 Some Properties of the FT
330(13)
8.2.1 Linearity
333(2)
8.2.2 Time Reversal
335(1)
8.2.3 Time Scaling
335(1)
8.2.4 Time Transformation
336(1)
8.2.5 Duality
337(1)
8.2.6 Frequency Shifting
337(1)
8.2.7 Time Differentiation
337(1)
8.2.8 Frequency Differentiation
338(1)
8.2.9 Convolution Property
338(5)
8.3 Problems and Solutions
343(22)
9 Solution of Difference Equations
365(22)
9.1 Constant-Coefficient Difference Equation
365(1)
9.2 Solution of Difference Equation
366(12)
9.2.1 Using Sequential Procedure
366(1)
9.2.2 Classical Technique
367(1)
9.2.2.1 The homogeneous solution of difference equation
367(3)
9.2.2.2 The particular solution of difference equation
370(1)
9.2.2.3 Rules for choosing particular solutions
371(7)
9.3 Problems and Solutions
378(9)
10 Z-Transform
387(34)
10.1 Introduction
387(1)
10.2 Z-Transform
387(6)
10.2.1 Region of Convergence
388(1)
10.2.2 Properties of RoC
389(4)
10.3 Theorems and Properties of Z-Transform
393(19)
10.3.1 Multiplication Property
393(2)
10.3.2 Linearity Property
395(2)
10.3.3 Time-Shifting Property
397(3)
10.3.4 Scaling Property
400(2)
10.3.5 Time Reversal Property
402(2)
10.3.6 Differentiation Property
404(2)
10.3.7 Convolution Property
406(2)
10.3.8 Correlation Property
408(1)
10.3.9 Initial Value Theorem
409(1)
10.3.10 Final Value Theorem
409(1)
10.3.11 Time Delay Property (One Sided Z-Transform)
410(1)
10.3.12 Time Advance Property
410(2)
10.4 Inverse Z-Transform (Residue Method)
412(9)
10.4.1 When the Poles are Real and Non-repeated
412(3)
10.4.2 When the Poles are Real and Repeated
415(2)
10.4.3 When the Poles are Complex
417(4)
11 Analog Filters Design
421(50)
11.1 Introduction
421(1)
11.2 LP Filters
422(6)
11.2.1 First Order RC LPF Circuit
423(3)
11.2.2 Second Order StocktickerRLC LPF Circuit
426(1)
11.2.3 Second Order RC LPF Circuit
427(1)
11.3 High-Pass Filters
428(1)
11.4 Band Pass Filters
429(1)
11.5 Band Reject Filters
430(2)
11.6 Designing Higher-Order Filters
432(1)
11.7 Problems Associated with Passive Filters
433(1)
11.8 Filters Using Operational Amplifiers
434(3)
11.9 Representing Structure of Analogue Computers
437(2)
11.10 Step-By-Step Design of Analogue Filters
439(1)
11.11 Butterworth Approximation Function
440(18)
11.11.1 Step-By-Step Design of Butterworth Filter
441(1)
11.11.2 Design Procedure for Butterworth Filter
442(1)
11.11.3 Design Procedure when H(ω) is Specified as a Mere Number
443(7)
11.11.4 Design Procedure when H(ω) is Specified in Decibels
450(8)
11.12 Chebyshev Approximation
458(7)
11.13 Butterworth and Chebyshev Filters' Comparison
465(2)
11.14 Practice Problems
467(4)
12 Future Trends
471(46)
12.1 Skin Lesion Segmentation from Dermoscopic Images using Convolutional Neural Network
471(22)
12.1.1 Introduction
472(1)
12.1.1.1 Literature Review
473(1)
12.1.1.1.1 Pre-processing techniques
474(1)
12.1.1.1.2 Segmentation techniques
475(1)
12.1.2 Materials and Methods
476(1)
12.1.2.1 Dataset Modalities
476(1)
12.1.2.2 Proposed Methodology
476(1)
12.1.2.2.1 Image pre-processing
477(2)
12.1.2.2.2 Model architecture
479(1)
12.1.2.2.3 Network training
480(1)
12.1.3 Results
481(1)
12.1.3.1 Model Evaluation
481(3)
12.1.4 Benchmarks
484(1)
12.1.4.1 Comparison with Different Frameworks
484(1)
12.1.4.2 Comparison with Top 5 Challenge Participants of Leaderboard
484(1)
12.1.4.3 Evaluation of Model on the PH2 Dataset
485(1)
12.1.5 Conclusions
486(1)
References
486(7)
12.2 Photodetector based Indoor Positioning Systems Variants: New Look
493(24)
12.2.1 Introduction
493(2)
12.2.2 Characteristics of Led-Based IPS
495(1)
12.2.2.1 Channel Model
495(1)
12.2.2.2 Multiplexing Protocols
496(1)
12.2.2.3 Field of View
497(1)
12.2.2.4 Noise
497(1)
12.2.2.5 Multipath Effect
498(1)
12.2.2.6 Error
499(1)
12.2.3 LED-Positioning Algorithms
499(1)
12.2.3.1 Received Signal Strength
499(1)
12.2.3.1.1 Trilateration
499(1)
12.2.3.1.2 Fingerprinting
500(1)
12.2.3.1.3 Proximity
501(1)
12.2.3.2 Time of Arrival/Time Difference of Arrival
501(1)
12.2.3.2.1 Trilateration
502(1)
12.2.3.2.2 Multilateration
503(1)
12.2.3.2.3 Angle of Arrival
504(1)
12.2.3.3 Data Smoothing Filters
505(1)
12.2.4 Types of Systems
505(1)
12.2.5 Analysis Metrics
506(3)
12.2.5.1 Accuracy
509(1)
12.2.5.2 Complexity
509(1)
12.2.5.3 Cost
509(1)
12.2.6 Challenges and Future Concerns
509(1)
12.2.7 New Look
510(2)
12.2.8 Conclusion
512(1)
References
512(5)
References and Bibliography 517(14)
Index 531(4)
About the Authors 535
Muhammad Nasir Khan, Syed K. Hasnain, Mohsin Jamil, Ali Imran