Muutke küpsiste eelistusi

E-raamat: Elementary Differential Equations

(Rensselaer Polytechnic Institute), (University of South Carolina - Columbia),
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 08-Dec-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119777731
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 59,22 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 08-Dec-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119777731
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"As we have prepared an updated edition our first priorities are to preserve, and to enhance, the qualities that have made previous editions so successful. In particular, we adopt the viewpoint of an applied mathematician with diverse interests in differential equations, ranging from quite theoretical to intensely practical-and usually a combination of both. Three pillars of our presentation of the material are methods of solution, analysis of solutions, and approximations of solutions. Regardless of thespecific viewpoint adopted,we have sought to ensure the exposition is simultaneously correct and complete, but not needlessly abstract. The intended audience is undergraduate STEM students whose degree program includes an introductory course in differential equations during the first two years. The essential prerequisite is a working knowledge of calculus, typically a two- or three-semester course sequence or an equivalent. While a basic familiarity with matrices is helpful, Sections 7.2 and 7.3 provide an overview of the essential linear algebra ideas needed for the parts of the book that deal with systems of differential equations (the remainder of Chapter 7, Section 8.5, and Chapter 9)"--

Elementary Differential Equations 12th Edition is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. In this revision, new author Douglas Meade focuses on developing students conceptual understanding with new concept check questions and worksheets for each chapter. Meade builds upon Boyce and DiPrima's work to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two or three semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

Preface vii
1 Introduction
1(25)
1.1 Some Basic Mathematical Models; Direction Fields
1(8)
1.2 Solutions of Some Differential Equations
9(8)
1.3 Classification of Differential Equations
17(9)
2 First-Order Differential Equations
26(80)
2.1 Linear Differential Equations; Method of Integrating Factors
26(8)
2.2 Separable Differential Equations
34(7)
2.3 Modeling with First-Order Differential Equations
41(12)
2.4 Differences Between Linear and Nonlinear Differential Equations
53(8)
2.5 Autonomous Differential Equations and Population Dynamics
61(11)
2.6 Exact Differential Equations and Integrating Factors
72(6)
2.7 Numerical Approximations: Euler's Method
78(8)
2.8 The Existence and Uniqueness Theorem
86(7)
2.9 First-Order Difference Equations
93(13)
3 Second-Order Linear Differential Equations
106(67)
3.1 Homogeneous Differential Equations with Constant Coefficients
106(7)
3.2 Solutions of Linear Homogeneous Equations; the Wronskian
113(10)
3.3 Complex Roots of the Characteristic Equation
123(7)
3.4 Repeated Roots; Reduction of Order
130(6)
3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients
136(9)
3.6 Variation of Parameters
145(5)
3.7 Mechanical and Electrical Vibrations
150(11)
3.8 Forced Periodic Vibrations
161(12)
4 Higher-Order Linear Differential Equations
173(21)
4.1 General Theory of nth Order Linear Differential Equations
173(5)
4.2 Homogeneous Differential Equations with Constant Coefficients
178(7)
4.3 The Method of Undetermined Coefficients
185(4)
4.4 The Method of Variation of Parameters
189(5)
5 Series Solutions of Second-Order Linear Equations
194(53)
5.1 Review of Power Series
194(6)
5.2 Series Solutions Near an Ordinary Point, Part I
200(9)
5.3 Series Solutions Near an Ordinary Point, Part II
209(6)
5.4 Euler Equations; Regular Singular Points
215(9)
5.5 Series Solutions Near a Regular Singular Point, Part I
224(4)
5.6 Series Solutions Near a Regular Singular Point, Part II
228(7)
5.7 Bessel's Equation
235(12)
6 The Laplace Transform
247(41)
6.1 Definition of the Laplace Transform
247(7)
6.2 Solution of Initial Value Problems
254(9)
6.3 Step Functions
263(7)
6.4 Differential Equations with Discontinuous Forcing Functions
270(5)
6.5 Impulse Functions
275(5)
6.6 The Convolution Integral
280(8)
7 Systems of First-Order Linear Equations
288(75)
7.1 Introduction
288(5)
7.2 Matrices
293(8)
7.3 Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors
301(10)
7.4 Basic Theory of Systems of First-Order Linear Equations
311(4)
7.5 Homogeneous Linear Systems with Constant Coefficients
315(10)
7.6 Complex-Valued Eigenvalues
325(10)
7.7 Fundamental Matrices
335(7)
7.8 Repeated Eigenvalues
342(9)
7.9 Nonhomogeneous Linear Systems
351(12)
8 Numerical Methods
363(37)
8.1 The Euler or Tangent Line Method
363(9)
8.2 Improvements on the Euler Method
372(4)
8.3 The Runge-Kutta Method
376(4)
8.4 Multistep Methods
380(5)
8.5 Systems of First-Order Equations
385(2)
8.6 More on Errors; Stability
387(13)
9 Nonlinear Differential Equations and Stability
400(76)
9.1 The Phase Plane: Linear Systems
400(10)
9.2 Autonomous Systems and Stability
410(9)
9.3 Locally Linear Systems
419(10)
9.4 Competing Species
429(10)
9.5 Predator-Prey Equations
439(7)
9.6 Liapunov's Second Method
446(9)
9.7 Periodic Solutions and Limit Cycles
455(10)
9.8 Chaos and Strange Attractors: The Lorenz Equations
465(11)
Answers To Problems 476(26)
Index 502