Muutke küpsiste eelistusi

E-raamat: Elementary Recursive Bound for Effective Positivstellensatz and Hilbert's 17th Problem

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors prove an elementary recursive bound on the degrees for Hilbert's 17th problem. More precisely they express a nonnegative polynomial as a sum of squares of rational functions and obtain as degree estimates for the numerators and denominators the following tower of five exponentials $ 2^{ 2^{ 2^{d^{4^{k}}} } } $ where $d$ is the number of variables of the input polynomial. The authors' method is based on the proof of an elementary recursive bound on the degrees for Stengle's Positivstellensatz. More precisely the authors give an algebraic certificate of the emptyness of the realization of a system of sign conditions and obtain as degree bounds for this certificate a tower of five exponentials, namely $ 2^{ 2^{\left(2^{\max\{2,d\}^{4^{k}}}+ s^{2^{k}}\max\{2, d\}^{16^{k}{\mathrm bit}(d)} \right)} } $ where $d$ is a bound on the degrees, $s$ is the number of polynomials and $k$ is the number of variables of the input polynomials.
Chapter 1 Introduction
1(8)
1.1 Hilbert's 17th problem
1(1)
1.2 Positivstellensatz
1(3)
1.3 Historical background on constructive proofs and degree bounds
4(1)
1.4 Our results
5(3)
1.5 Organization of the paper
8(1)
Acknowledgements
8(1)
Chapter 2 Weak inference and weak existence
9(20)
2.1 Weak inference
9(9)
2.2 Weak existence
18(3)
2.3 Complex numbers
21(4)
2.4 Identical polynomials
25(2)
2.5 Matrices
27(2)
Chapter 3 Intermediate value theorem
29(6)
3.1 Intermediate value theorem
29(3)
3.2 Real root of a polynomial of odd degree
32(3)
Chapter 4 Fundamental theorem of algebra
35(18)
4.1 Fundamental theorem of algebra
35(6)
4.2 Decomposition of a polynomial into irreducible real factors
41(5)
4.3 Decomposition of a polynomial into irreducible real factors with multiplicities
46(7)
Chapter 5 Hermite's Theory
53(28)
5.1 Signature of Hermite's quadratic form and real root counting
53(6)
5.2 Signature of Hermite's quadratic form and signs of principal minors
59(14)
5.3 Sylvester Inertia Law
73(4)
5.4 Hermite's quadratic form and Sylvester Inertia Law
77(4)
Chapter 6 Elimination of one variable
81(32)
6.1 Thom encoding of real algebraic numbers
82(4)
6.2 Conditions on the parameters fixing the Thom encoding
86(12)
6.3 Conditions on the parameters fixing the real root order on a family
98(6)
6.4 Realizable sign conditions on a family of polynomials
104(9)
Chapter 7 Proof of the main theorems
113(6)
Chapter 8 Annex
119(4)
Bibliography 123
Henri Lombardi, Universite de Franche-Comte, Besancon, France

Daniel Perrucci, Universidad de Buenos Aires, Argentina

Marie-Francoise Roy, Universite de Rennes, France