Muutke küpsiste eelistusi

E-raamat: Elements Of Linear And Multilinear Algebra

(Portland State Univ, Usa)
  • Formaat: 236 pages
  • Ilmumisaeg: 22-Dec-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811222740
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 29,25 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 236 pages
  • Ilmumisaeg: 22-Dec-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811222740
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes - to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as "proposition", "example", "theorem", "exercise", and "corollary", if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made. These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students. This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects"--
Preface xi
Notation and Terminology 1(6)
Some Algebraic Objects
1(1)
Notation for Sets of Numbers
2(2)
Greek Letters
4(1)
Fraktur Fonts
5(2)
Chapter 1 Vector Spaces
7(24)
1.1 Abelian Groups
7(2)
1.2 Functions and Diagrams
9(5)
1.3 Rings
14(1)
1.4 Vector Spaces
15(4)
1.5 Subspaces
19(4)
1.6 Linear Combinations and Linear Independence
23(2)
1.7 Bases for Vector Spaces
25(6)
Chapter 2 Linear Transformations
31(12)
2.1 Linearity
31(3)
2.2 Invertible Linear Maps
34(2)
2.3 Matrix Representations
36(1)
2.4 Spans, Independence, and Linearity
37(1)
2.5 Dual Spaces
38(3)
2.6 Annihilators
41(2)
Chapter 3 The Language of Categories
43(16)
3.1 Objects and Morphisms
43(2)
3.2 Functors
45(3)
3.3 Universal Mapping Properties
48(2)
3.4 Products and Coproducts
50(2)
3.5 Quotients
52(2)
3.6 Exact Sequences
54(3)
3.7 Some Miscellaneous Results
57(2)
Chapter 4 The Spectral Theorem for Vector Spaces
59(26)
4.1 Projections
59(2)
4.2 Algebras
61(3)
4.3 Quotients and Unitizations
64(1)
4.4 The Spectrum
64(1)
4.5 Polynomials
65(4)
4.6 Minimal Polynomials
69(3)
4.7 Invariant Subspaces
72(1)
4.8 Burnside's Theorem
73(2)
4.9 Eigenvalues and Eigenvectors
75(4)
4.10 The Spectral Theorem -- Vector Space Version
79(1)
4.11 Two Decomposition Theorems
80(5)
Chapter 5 The Spectral Theorem for Inner Product Spaces
85(20)
5.1 Inner Products
85(4)
5.2 Orthogonality
89(5)
5.3 Involutions and Adjoints
94(4)
5.4 Orthogonal Projections
98(2)
5.5 The Spectral Theorem for Inner Product Spaces
100(5)
Chapter 6 A Brief Review of Differential Calculus
105(8)
6.1 Tangency
106(1)
6.2 The Differential
107(3)
6.3 The Gradient of a Scalar Field in R®
110(3)
Chapter 7 Multilinear Maps and Determinants
113(10)
7.1 Permutations
113(1)
7.2 Multilinear Maps
114(2)
7.3 Determinants
116(2)
7.4 Tensor Products of Vector Spaces
118(3)
7.5 Tensor Products of Linear Maps
121(2)
Chapter 8 Tensor Algebras
123(8)
8.1 Grassmann Algebras
123(2)
8.2 Existence of Grassmann Algebras
125(3)
8.3 The Hodge *-operator
128(3)
Chapter 9 Differential Manifolds
131(22)
9.1 Manifolds in R3
131(1)
9.2 Charts, Atlases, and Manifolds
132(3)
9.3 Differentiable Functions Between Manifolds
135(1)
9.4 The Geometric Tangent Space
136(5)
9.5 The Algebraic Tangent Space
141(12)
Chapter 10 Differential Forms on Manifolds
153(10)
10.1 Vector Fields
153(1)
10.2 Differential 1-forms
154(1)
10.3 Differential k-forms
155(3)
10.4 Some Classical Vector Analysis
158(1)
10.5 Closed and Exact Forms
159(1)
10.6 Poincare's Lemma
160(3)
Chapter 11 Homology and Cohomology
163(12)
11.1 The de Rham Cohomology Group
163(3)
11.2 Cochain Complexes
166(1)
11.3 Simplicial Homology
167(4)
11.4 Simplicial Cohomology
171(4)
Chapter 12 Stokes' Theorem
175(8)
12.1 Integration of Differential Forms
175(4)
12.2 Generalized Stokes' Theorem
179(4)
Chapter 13 Geometric Algebra
183(10)
13.1 Geometric Plane Algebra
183(5)
13.2 Geometric Algebra in 3-Space
188(5)
Chapter 14 Clifford Algebras
193(8)
14.1 Quadratic Forms
193(1)
14.2 Definition of Clifford Algebra
194(1)
14.3 Orthogonality with Respect to Bilinear Forms
195(1)
14.4 Examples of Clifford Algebras
196(5)
Bibliography 201(2)
Index 203