Muutke küpsiste eelistusi

E-raamat: Elliptic Systems of Phase Transition Type

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates.

Key features and topics of this self-contained, systematic exposition include:





Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions.





Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves.





Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates.





Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results.

This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or theapplied mathematics of materials science.

Arvustused

This monograph is a useful reference for experts. It is also good for those who want to learn about recent results and methods and start doing research in this field. (Juha K. Kinnunen, Mathematical Reviews, November, 2019)

Introduction.- Connections.- Basics for the PDE System.- The Cut-Off
Lemma and a Maximum Principle.- Estimates.- Symmetry and the Vector
Allen-Cahn Equation: the Point Group in Rn.- Symmetry and the Vector
Allen-Cahn Equation: Crystalline and Other Complex Structures.- Hierarchical
Structure - Stratification.- Vector Minimizers in R2.- Radial Solutions of u
= c2u.