Muutke küpsiste eelistusi

E-raamat: Elliptic Theory for Sets with Higher Co-Dimensional Boundaries

  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1"--

Many geometric and analytic properties of sets hinge on the properties of elliptic measures, notoriously missing for sets of higher co-dimensions. Here, David, Feneuil, and Mayboroda develop a version of elliptic theory, associated to a linear partial differential equation, that ultimately yields a notion analogous to that of the harmonic measures, for sets of codimension higher than one. Among their topics are the Harnack chain condition and the doubling property, completeness and density of smooth functions, the chain rule and applications, definition of solutions, and the comparison principle. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Guy David, University of Paris-Sud, Orsay, France.

Joseph Feneuil, Temple University, Philadelphia, PA.

Svitlana Mayboroda, University of Minnesota, Minneapolis, MN.