Muutke küpsiste eelistusi

E-raamat: Elliptic Theory on Singular Manifolds

(Moscow State University, Moscow, Russia), (Institute for Problems in Mechanics, Moscow, Russia), ,
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Using examples, the authors describe singular manifolds with differential operations defined on them, focusing on spaces that possess rich additional structures permitting definition of differential operators in a natural way. They begin with the geometry of singularities and proceed to elliptic operators on singular manifolds, then cover analytical tools such as pseudodifferential operators and localization in elliptic theory. They uncover topological problems such as index theory and elliptic edge problems, then describe applications and related topics such as Fourier integral operators on singular manifolds, relative elliptic theory, the index of geometric operators on manifolds with cylindrical ends, the homotopy classification of elliptic operators and Lefschetz formulas. They include a comprehensive bibliography. Annotation ©2005 Book News, Inc., Portland, OR (booknews.com)

The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints.

Starting from an elementary level and finishing with the most recent results, this book gives a systematic exposition of both analytical and topological aspects of elliptic theory on manifolds with singularities. The presentation includes a review of the main techniques of the theory of elliptic equations, offers a comparative analysis of various approaches to differential equations on manifolds with singularities, and devotes considerable attention to applications of the theory. These include Sobolev problems, theorems of Atiyah-Bott-Lefschetz type, and proofs of index formulas for elliptic operators and problems on manifolds with singularities, including the authors' new solution to the index problem for manifolds with nonisolated singularities.

A glossary, numerous illustrations, and many examples help readers master the subject. Clear exposition, up-to-date coverage, and accessibility-even at the advanced undergraduate level-lay the groundwork for continuing studies and further advances in the field.
Preface ix
About the Authors xi
Notation xiii
Singular Manifolds and Differential Operators
1(58)
Geometry of Singularities
3(42)
Preliminaries
3(11)
Manifolds with conical singularities
14(19)
Manifolds with edges
33(12)
Elliptic Operators on Singular Manifolds
45(14)
Operators on manifolds with conical singularities
45(5)
Operators on manifolds with edges
50(5)
Examples of elliptic edge operators
55(4)
Analytical Tools
59(90)
Pseudodifferential Operators
61(62)
Preliminary remarks
61(2)
Classical theory
63(11)
Operators in sections of Hilbert bundles
74(11)
Operators on singular manifolds
85(19)
Ellipticity and finiteness theorems
104(8)
Index theorems on smooth closed manifolds
112(11)
Localization (Surgery) in Elliptic Theory
123(26)
The index locality principle
123(8)
Localization in index theory on smooth manifolds
131(6)
Surgery for the index of elliptic operators on singular manifolds
137(1)
Relative index formulas on manifolds with isolated singularities
138(11)
Topological Problems
149(78)
Index Theory
151(50)
Statement of the problem
151(14)
Invariants of interior symbol and symmetries
165(10)
Invariants of the edge symbol
175(5)
Index theorems
180(4)
Index on manifolds with isolated singularities
184(5)
Supplement. Classification of elliptic symbols with symmetry and K-theory
189(9)
Supplement. Proof of Proposition 5.16
198(3)
Elliptic Edge Problems
201(26)
Morphisms
202(10)
The obstruction to ellipticity
212(4)
A formula for the obstruction in topological terms
216(6)
Examples. Obstructions for geometric operators
222(5)
Applications and Related Topics
227(72)
Fourier Integral Operators on Singular Manifolds
229(18)
Homogeneous canonical (contact) transformations
229(4)
Definition of Fourier integral operators
233(3)
Properties of Fourier integral operators
236(3)
The index of elliptic Fourier integral operators
239(3)
Application to quantized contact transformations
242(2)
Example
244(3)
Relative Elliptic Theory
247(12)
Analytic aspects of relative elliptic theory
247(6)
Topological aspects of relative elliptic theory
253(6)
Index of Geometric Operators on Manifolds with Cylindrical Ends
259(10)
Operators on manifolds with cylindrical ends
259(2)
Index formulas
261(8)
Homotopy Classification of Elliptic Operators
269(12)
The homotopy classification problem
269(2)
Classification on smooth manifolds
271(1)
Atiyah-de Rham duality
272(2)
Abstract elliptic operators and analytic K-homology
274(3)
Classification on singular manifolds
277(1)
Some applications
278(3)
Lefschetz Formulas
281(18)
Main result
282(3)
Proof of the theorem
285(7)
Contributions of conical points as sums of residues
292(2)
Supplement. The Lefschetz number
294(1)
Supplement. The Sternin-Shatalov method
295(4)
Appendices
299(34)
A Spectral Flow
299(18)
A.1 The classical spectral flow
299(6)
A.2 The spectral flow of families of parameter-dependent operators
305(7)
A.3 Higher spectral flows
312(5)
B Eta Invariants
317(12)
B.1 The Atiyah-Patodi-Singer eta invariant
317(5)
B.2 The eta invariant of families with parameter (Melrose's theory)
322(7)
C Index of Parameter-Dependent Elliptic Families
329(4)
Bibliographic Remarks 333(8)
Bibliography 341(12)
Index 353
Nazaikinskii, Vladimir E.; Savin, Anton Yu.; Schulze, Bert-Wolfgang; Sternin, Boris Yu.