Muutke küpsiste eelistusi

E-raamat: Embeddings of Decomposition Spaces

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space [ equation] is determined by a covering [ equation] of the frequency domain, anintegrability exponent p, and a sequence space [ equation]. Given these ingredients, the decomposition space norm of a distribution g is defined as [ equation] is a suitable partition of unity for Q. We establish readily verifiable criteria which ensure the existence of a continuous inclusion ("an embedding") [ equation], mostly concentrating on the case where [ equation]. Under suitable assumptions on Q, P, we will see that the relevant sufficient conditions are [ equation] and finiteness of a nested norm ofthe form [ equation]. Like the sets Ij, the exponents t, s and the weights [ omega], [ beta] only depend on the quantities used to define the decomposition spaces. In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings. These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of p1, p2, our criteria yield a complete characterization for the existence of the embedding. The same holds for arbitrary values of p1, p2 under more strict assumptions on the coverings. We also prove a rigidity result, namely that--[ equation]--two decomposition spaces [ equation] and [ equation] can only coincide if their "ingredients" are equivalent, that is, if [ equation] and [ equation] and if the coverings Q,P and the weights w, v are equivalent in a suitable sense. The resulting embedding theory is illustrated by applications to [ omega]-modulation and Besov spaces. All known embedding results for these spaces are special cases of our approach; often, we improve considerably upon the state ofthe art"--
Felix Voigtlaender, Catholic University of Eichstatt-Ingolstadt, Germany.