Muutke küpsiste eelistusi

E-raamat: Emerging Information Security and Applications: 5th International Conference, EISA 2024, Changzhou, China, October 18-19, 2024, Proceedings

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 5th International Conference on EISA--Emerging Information Security and Applications, EISA 2024, held in Changzhou, China, during October 1819, 2024.





The 15 full papers and 3 short papers included in this book were carefully reviewed and selected from 52 submissions. The topics covered adversarial techniques, intrusions that may threaten the security of various assets, including information and applications, have become more complex.

.- High-Efficiency Phase-Index Correlation Delay Shift Keying Modulation.
.- Federated Learning Poison Attack Detection Scheme Based on Gradient Similarity.
.- A Privacy-Preserving and Fault-Tolerant Data Aggregation Scheme in Smart Grids.
.- Local Differential Privacy for Key-Value Data Collection and Analysis Based on Privacy Preference and Adaptive Sampling.
.- Comparative Study of Machine Learning Approaches for Phishing Website Detection.
.- Exploring Interpretability in Backdoor Attacks on Image.
.- Attribute-Based Secret Key Signature Scheme.
.- Digital token transaction tracing method.
.- GPT-based WebAssembly Instruction Analysis for Program Language Processing.
.- Research on Key Technologies of Fair Deep Learning.
.- Adaptive Differential Privacy Based Optimization Scheme for Federated Learning.
.- Cascading failures model with noise interference in supply chain networks.
.- DefMPA: Defending Model Poisoning Attacks in Federated Learning via Model Update Prediction.
.- SDDRM: An Optimization Algorithm for Localized Differential Privacy Based on Data Sensitivity Differences.
.- Blockchain-based key management scheme in Internet of Things.
.- Privacy Optimization of Deep Recommendation Algorithm in Federated Framework.
.- Delegated Proof of Stake Consensus Mechanism Based on the Overall Perspective of Voting.
.- A Distributed Privacy-preserving Data Aggregation Scheme for MaaS Data Sharing.