Muutke küpsiste eelistusi

E-raamat: EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.
1 Introduction to EMG Technique and Feature Extraction
1(10)
1.1 Structure
4(7)
2 Methodology for Working with EMG Dataset
11(10)
2.1 EMG Dataset
11(3)
2.2 Feature Extraction
14(3)
2.3 Neuro-Fuzzy Classifier
17(4)
3 Results
21(6)
4 Conclusions and Inferences of Present Study
27(2)
Appendix 29(4)
References 33
Ms. Bita is an Occupational Therapist with dignified academic background over eight years experience in treatment of multiple sclerosis, Neuro-rehabilitation, Orthopedic Rehabilitation and researcher role in the Neuro-rehabilitation research, Ergo Design and treatment field of an esteemed Rehabilitation centre. Presently she works in synergy with medical practitioner of high repute while operating from private practice to contribute to society and medical fraternity.

Mr. Vinit Kumar Gunjan is an Assistant Professor at AITS, Rajampet India. He also serves as the Secretary of IEEE Computer Society of Hyderabad Chapter. He worked with Tata Consultancy Services and SET Noida before joining AITS. Vinit is member of several IEEE Societies, ACM, ACCS, IE and others. He has several National and International Publications to his credit.