Muutke küpsiste eelistusi

E-raamat: Encounters with Chaos and Fractals

(University of Maryland, College Park, USA)
  • Formaat: 387 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 26-Apr-2012
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781466558755
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 113,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 387 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 26-Apr-2012
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781466558755
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"PREFACE The far-reaching interest in chaos and fractals are outgrowths of the computer age. On the one hand, the notion of chaos is related to dynamics, or behavior, of physical systems. On the other hand, fractals are related to geometry, and appear asdelightful but in nitely complex shapes on the line, in the plane or in space. Encounters with Chaos and Fractals is designed to give an introduction both to chaotic dynamics and to fractal geometry. During the past fty years the topics of chaotic dynamics and fractal geometry have become increasingly popular. Applications have extended to disciplines as diverse an electric circuits, weather prediction, orbits of satellites, chemical reactions, analysis of cloud formations and complicated coast lines, and the spread of disease. A fundamental reason for this popularity is the power of the computer, with its ability to produce complex calculations, and to create fascinating graphics. The computer has allowed scientists and mathematicians to solve problems in chaotic dynamics that hitherto seemed intractable, and to analyze scienti c data that in earlier times appeared to be either random or awed. Fractals, on the other hand, are basically geometric, but depend on many of the same mathematical properties that chaotic dynamics do. Mathematics lies at the foundation of chaotic dynamics and fractals. The very concepts that describe chaotic behavior and fractal graphs are mathematical in nature, whether they be analytic, geometric, algebraic or probabilistic. Some of these concepts are elementary, others are sophisticated. There are many books that discuss chaos and fractals in an expository manner, as there are treatises on chaos theory and fractal geometry written at the graduate level"--



Now with an extensive introduction to fractal geometry

Revised and updated, Encounters with Chaos and Fractals, Second Edition provides an accessible introduction to chaotic dynamics and fractal geometry for readers with a calculus background. It incorporates important mathematical concepts associated with these areas and backs up the definitions and results with motivation, examples, and applications.

Laying the groundwork for later chapters, the text begins with examples of mathematical behavior exhibited by chaotic systems, first in one dimension and then in two and three dimensions. Focusing on fractal geometry, the author goes on to introduce famous infinitely complicated fractals. He analyzes them and explains how to obtain computer renditions of them. The book concludes with the famous Julia sets and the Mandelbrot set.

With more than enough material for a one-semester course, this book gives readers an appreciation of the beauty and diversity of applications of chaotic dynamics and fractal geometry. It shows how these subjects continue to grow within mathematics and in many other disciplines.

Arvustused

"This text aims to introduce anyone who has a knowledge of calculus to chaotic dynamics and fractal geometry at a modest level of sophistication. Indeed, the author makes this possible through careful exposition, examples, and exercises " Steve Pederson, Zentralblatt MATH 1253

Preface xi
Introduction xv
1 Periodic Points
1(78)
1.1 Iterates of Functions
1(5)
1.2 Fixed Points
6(11)
1.3 Periodic Points
17(9)
1.4 Families of Functions
26(12)
1.5 The Quadratic Family
38(10)
1.6 Bifurcations
48(9)
1.7 Period-3 Points
57(9)
1.8 The Schwarzian Derivative
66(13)
2 One-Dimensional Chaos
79(44)
2.1 Chaos
79(12)
2.2 Transitivity and Strong Chaos
91(8)
2.3 Conjugacy
99(8)
2.4 Cantor Sets
107(16)
3 Two-Dimensional Chaos
123(56)
3.1 Review of Matrices
123(9)
3.2 Dynamics of Linear Functions
132(15)
3.3 Nonlinear Maps
147(11)
3.4 The Henon Map
158(9)
3.5 The Horseshoe Map
167(12)
4 Systems of Differential Equations
179(42)
4.1 Review of Systems of Differential Equations
179(16)
4.2 Almost Linearity
195(9)
4.3 The Pendulum
204(8)
4.4 The Lorenz System
212(9)
5 Introduction to Fractals
221(48)
5.1 Self-Similarity
221(8)
5.2 The Sierpinski Gasket and Other "Monsters"
229(9)
5.3 Space-Filling Curves
238(8)
5.4 Similarity and Capacity Dimensions
246(11)
5.5 Lyapunov Dimension
257(6)
5.6 Calculating Fractal Dimensions of Objects
263(6)
6 Creating Fractals Sets
269(42)
6.1 Metric Spaces
269(7)
6.2 The Hausdorff Metric
276(7)
6.3 Contractions and Affine Functions
283(9)
6.4 Iterated Function Systems
292(7)
6.5 Algorithms for Drawing Fractals
299(12)
7 Complex Fractals: Julia Sets and the Mandelbrot Set
311(33)
7.1 Complex Numbers and Functions
311(13)
7.2 Julia Sets
324(10)
7.3 The Mandelbrot Set
334(10)
Appendix: Computer Programs
344(9)
Program 1 Iterate
344(1)
Program 2 Number of Iterates
344(1)
Program 3 Plot
345(1)
Program 4 Bifurcation
346(1)
Program 5 Henon
347(1)
Program 6 Julia
348(1)
Program 7 Mandelbrot
349(1)
Program 8 Iterated Function System
350(1)
Program 9 Fern Leaf
351(1)
Program 10 Chaos Game
352(1)
Answers to Selected Exercises 353(10)
References 363(4)
Index 367
Denny Gulick is a professor in the Department of Mathematics at the University of Maryland. His research interests include operator theory and fractal geometry. He earned a PhD from Yale University.