Muutke küpsiste eelistusi

E-raamat: Encyclopedia Of Two-phase Heat Transfer And Flow Iii: Macro And Micro Flow Boiling And Numerical Modeling Fundamentals (A 4-volume Set)

Edited by (Lab Of Heat & Mass Transfer (Ltcm), Switzerland & Ecole Polytechnique Federale De Lausanne (Epfl), Switzerland)
  • Formaat: 1460 pages
  • Ilmumisaeg: 13-Mar-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813227422
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 1 153,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 1460 pages
  • Ilmumisaeg: 13-Mar-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813227422
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Set III of this encyclopedia is a new addition to the previous Sets I and II. It contains 26 invited chapters from international specialists on the topics of numerical modeling of two-phase flows and evaporation, fundamentals of evaporation and condensation in microchannels and macrochannels, development and testing of micro two-phase cooling systems for electronics, and various special topics (surface wetting effects, microfin tubes, two-phase flow vibration across tube bundles). The chapters are written both by renowned university researchers and by well-known engineers from leading corporate research laboratories. Numerous 'must read' chapters cover the fundamentals of research and engineering practice on boiling, condensation and two-phase flows, two-phase heat transfer equipment, electronics cooling systems, case studies and so forth. Set III constitutes a 'must have' reference together with Sets I and II for thermal engineering researchers and practitioners.
Encyclopedia of Two-phase Heat Transfer and Flow III: Volume 1-Numerical Modeling Methodologies
Preface
v
About the Editor-in-Chief
vii
List of Contributors
ix
Chapter 1 Fundamentals of Multiphase Flow Modeling Based on Continuum Dynamics
1(26)
Akio Tomiyama
Kosuke Hayashi
1 One-Fluid Formulation
1(13)
1.1 Kinematic equation of interface
1(1)
1.2 Phase definition function
2(1)
1.3 Interface curvature and surface tension
3(3)
1.4 Local instantaneous equations and jump conditions
6(6)
1.5 One-fluid formulation
12(2)
2 Ensemble-Averaged Equations
14(3)
2.1 General form of averaged equations
14(2)
2.2 Averaged conservation equations
16(1)
Appendix A
17(8)
A.1 Mathematical tools
17(1)
A.1.1 Vectors and tensors
17(1)
A.1.2 Derivatives of scalar and vector fields
20(1)
A.1.3 Gauss theorem and Stokes theorem
21(1)
A.1.4 Leibniz rule and Reynolds' transport theorem
21(2)
A.2 Curvature of 2D interface
23(1)
A.3 Surface tension force in surface integral form
24(1)
References
25(2)
Chapter 2 Interface Tracking Methods
27(46)
Kosuke Hayashi
Akio Tomiyama
1 One-Fluid Formulation for Incompressible Two-Phase Flows
27(1)
2 Solving One-Fluid Equations
28(4)
3 Volume-of-Fluid Method
32(20)
3.1 Mixture density and viscosity
32(2)
3.2 Surface tension force model
34(1)
3.3 Balanced-force-type discretization for fsigma
35(2)
3.4 Curvature evaluation
37(4)
3.5 Time integration of advection equation of alpha
41(3)
3.6 Advection of alpha
44(1)
3.6.1 Non-uniform subcell scheme
44(1)
3.6.2 Advection tests
46(1)
3.7 Rising drop simulations
47(1)
3.7.1 2D axisymmetric coordinates
47(1)
3.7.2 3D simulation for curved boundaries
48(4)
4 Level-Set Method
52(9)
4.1 Level-set equation
52(1)
4.2 Reinitialization of level-set function
53(3)
4.3 Advection test
56(2)
4.4 Fluid properties
58(1)
4.5 Surface tension force model
58(2)
4.6 Rising drop
60(1)
5 Front-Tracking Method
61(8)
5.1 Interface representation and interface tracking
61(3)
5.2 Phase definition function and fluid properties
64(2)
5.3 Surface tension force model
66(3)
References
69(4)
Chapter 3 Tutorial on Advection Schemes for Interface Volume Capturing Techniques
73(44)
Andrea Ferrari
1 Introduction
73(2)
2 Basic Equations
75(3)
2.1 One-fluid formulation
76(2)
3 Volume-of-Fluid Method
78(3)
4 Advecting an Indicator Function
81(4)
5 Geometrical VOF Methods
85(16)
5.1 PLIC: Interface reconstruction
87(1)
5.1.1 Parker and Young's method
88(1)
5.1.2 Height function method
88(1)
5.1.3 ELVIRA method
90(1)
5.1.4 The least-square fit method
90(1)
5.1.5 Determination of the line constant C
91(1)
5.2 PLIC: Interface advection
92(1)
5.2.1 Lagrangian scheme
93(1)
5.2.2 Eulerian scheme
95(4)
5.3 Concluding remarks on geometric VOF methods
99(2)
6 Algebraic VOF Methods
101(11)
6.1 CICSAM
103(1)
6.1.1 Normalized variable diagram
103(1)
6.1.2 The basis of the CICSAM scheme
105(3)
6.2 Flux corrected transport
108(1)
6.2.1 MULES
109(2)
6.3 Concluding remarks on algebraic VOF methods
111(1)
7 Conclusion
112(1)
References
112(5)
Chapter 4 Arbitrary Lagrangian-Eulerian FEM for Two-Phase Flows: New Methods
117(24)
G.P. Oliveira
Gustavo R. Anjos
Norberto Mangiavacchi
1 Introduction
117(1)
2 ALE-FEM Background
118(2)
3 Pre-Processing of Periodic Meshes
120(3)
4 Periodic Decomposition via the Transformed Variable Approach
123(1)
5 Periodic Boundary Conditions: Variational Context and Implementation
124(7)
5.1 Variational formulation in periodic domains
124(3)
5.2 Computational implementation: Post-assembling elimination
127(3)
5.3 Computational implementation: In-assembling elimination
130(1)
6 Semi-Lagrangian Method: Correction and Interpolation Issues
131(3)
6.1 Cross-boundary trajectories
132(1)
6.2 Gradient-based FE spaces
133(1)
7 Future Challenges
134(5)
7.1 Array of elongated bubbles in microchannels
134(1)
7.2 Periodic annular flow
135(4)
8 Conclusion
139(1)
Acknowledgments
139(1)
References
139(2)
Chapter 5 Arbitrary Lagrangian-Eulerian Method for Two-Phase Flows: Applications
141(44)
Gustavo R. Anjos
G.P. Oliveira
Norberto Mangiavacchi
1 Introduction
141(2)
2 Validations, Benchmarks and Results
143(38)
2.1 Curvature calculation
143(2)
2.2 Static droplet
145(2)
2.3 Sessile drop
147(2)
2.4 Oscillating drop
149(2)
2.5 Falling drop in an inert media
151(2)
2.6 Rising bubble
153(5)
2.7 Rising of Taylor bubbles
158(7)
2.8 Periodic array of in-line rising bubbles
165(1)
2.8.1 Dimensionless governing equations
167(1)
2.8.2 Adaptive mesh refinement
168(1)
2.8.3 Validation tests and rising velocities
168(1)
2.8.4 Shape factors and trajectories
170(1)
2.8.5 Wake effects and near-field velocity
172(3)
2.9 Microchannel simulations
175(3)
2.10 Sinusoidal channels
178(3)
3 Conclusion
181(1)
References
182(3)
Chapter 6 Arbitrary Lagrangian-Eulerian Method for Two-Phase Flows: 2D and Axisymmetric Formulation
185(40)
Erik Gros
Gustavo R. Anjos
John R. Thome
1 Introduction
186(1)
2 Describing Moving Interfaces
186(2)
3 Governing Equations
188(6)
3.1 Two-phase flow equations
188(2)
3.2 Coordinate systems
190(2)
3.3 ALE formulation
192(1)
3.4 Curvature and surface tension
192(1)
3.4.1 Axisymmetric case
193(1)
4 Finite Element Method
194(9)
4.1 The weak form
194(2)
4.2 Galerkin method
196(1)
4.3 Weak form of the Navier-Stokes equations
197(2)
4.4 Elements for the Navier-Stokes equations
199(1)
4.5 Element shape functions
199(1)
4.5.1 Linear element
201(1)
4.5.2 Linear + cubic bubble
201(1)
4.5.3 Quadratic element
202(1)
4.5.4 Quadratic + cubic bubble
202(1)
4.5.5 Cubic element
202(1)
5 Discrete Model
203(6)
5.1 Time discretization
203(1)
5.2 Linear system
204(1)
5.3 Boundary conditions
205(1)
5.4 Discrete surface tension force
206(2)
5.5 Extension of interface quantities
208(1)
6 Mesh Update Procedure
209(2)
6.1 Adaptive refinement
210(1)
7 Results and Validation
211(9)
7.1 Stokes flow around a sphere
211(1)
7.2 Drop in a uniform velocity field
212(3)
7.3 Oscillating drop
215(1)
7.4 Rayleigh-Taylor instability
216(2)
7.5 Bubble flowing in a microchannel
218(2)
8 Conclusions
220(1)
References
221(4)
Chapter 7 Examples of Pool-Boiling Simulations Using an Interface Tracking Method Applied to Nucleate Boiling, Departure from Nucleate Boiling and Film Boiling
225(40)
Yohei Sato
Brian L. Smith
Bojan Niceno
1 Introduction
225(3)
2 Numerical Method
228(13)
2.1 Navier-Stokes solver for two-phase flow
228(2)
2.2 Energy balance equation
230(4)
2.3 Sharp-interface phase-change model
234(1)
2.4 Nucleation-site model
235(1)
2.5 Micro-layer model
236(4)
2.6 The complete solution algorithm
240(1)
2.7 Assumptions
241(1)
3 Simulations
241(18)
3.1 Verification of phase-change model
242(1)
3.2 Pool boiling from a single-nucleation site
243(3)
3.3 Pool boiling from multiple nucleation sites
246(1)
3.3.1 Conditions for the simulation
248(1)
3.3.2 Results of the simulations
251(1)
3.3.2.1 Parameter studies for Cslope
251(1)
3.3.2.2 Wall temperature and heat flux
252(1)
3.3.2.3 Heat transfer coefficient
253(1)
3.3.2.4 Sources of mass transfer: Superheated liquid and micro-layer
254(1)
3.3.2.5 Bubble shape and temperature distribution
254(1)
3.3.2.6 Photographic study comparisons
259(1)
4 Closure
259(1)
Acknowledgments
260(1)
References
260(5)
Chapter 8 Direct Numerical Simulations for Two-Phase Flows with Phase Change
265(24)
Mario F. Trujillo
Lakshman Anumolu
Douglas T Ryddner
1 Introduction
265(2)
2 Interface Transport
267(16)
2.1 Volume-of-fluid
267(3)
2.2 Level-set methods
270(1)
2.3 Illustrative examples
271(2)
2.4 Conservation of momentum
273(3)
2.5 Energy calculation
276(2)
2.6 Stefan 1D test case
278(3)
2.7 2D vapor bubble
281(2)
3 Conclusions and Future Work
283(1)
Acknowledgments
284(1)
References
284(5)
Index
289
Encyclopedia of Two-phase Heat Transfer and Flow III: Volume 2-Macro and Microscale Flow Boiling and Condensation
Preface
v
About the Editor-in-Chief
vii
List of Contributors
ix
Chapter 1 Two-Phase Flow and Heat Transfer in Multi-Microchannel Evaporators: Improved Measurements, Data Reduction and Models
1(102)
Houxue Huang
John R. Thome
1 Introduction
1(9)
1.1 Flow boiling heat transfer mechanism
2(2)
1.2 Heat conduction models for reducing test data
4(1)
1.3 Flow boiling pressure drop
5(2)
1.4 Wall temperature response under transient heat loads
7(1)
1.5 Transient local heat transfer coefficients
8(2)
2 Experimental Setup
10(3)
2.1 Facility and test section
10(2)
2.2 Operating conditions and measurement uncertainties
12(1)
3 Data Reduction
13(19)
3.1 Single-phase flow
13(1)
3.1.1 Pressure drop
13(1)
3.1.2 Heat transfer
15(1)
3.1.2.1 Energy balance
15(1)
3.1.2.2 Local Nusselt number
15(1)
3.2 Two-phase flow
16(1)
3.2.1 Pressure drop
16(1)
3.2.1.1 Inlet and outlet restriction pressure drops
16(1)
3.2.1.2 Channel pressure drops
16(1)
3.2.2 Heat transfer
17(1)
3.2.2.1 Energy balance
17(1)
3.2.2.2 Local heat transfer coefficients
18(1)
3.3 Heat conduction models
18(1)
3.3.1 1D-Direct model
18(1)
3.3.2 2D-TDMA model
19(1)
3.3.3 3D-Direct model
20(1)
3.3.4 3D inverse heat conduction model (3D-TDMA)
21(1)
3.3.4.1 Boundary conditions
22(1)
3.3.4.2 3D TDMA
23(1)
3.3.4.3 Newton-Raphson iteration
24(1)
3.3.4.4 Energy balance method
25(1)
3.4 Validation of heat conduction models
25(1)
3.4.1 Case I: Single-phase flow
26(1)
3.4.1.1 Footprint heat flux and temperature
26(1)
3.4.1.2 Local fluid temperature, heat transfer coefficients and Nusselt number
27(2)
3.4.2 Case II: Two-phase flow
29(1)
3.4.2.1 Footprint heat flux and temperature
29(3)
4 Single-Phase Flow Validation
32(2)
4.1 Flow friction factor
32(1)
4.1.1 Energy balance
33(1)
4.1.2 Local Nusselt number
33(1)
5 Two-Phase Flow Experimental Results and Discussion
34(48)
5.1 Steady-state pressure drop
34(1)
5.1.1 Experimental results
34(1)
5.1.1.1 Influence from saturation temperature
35(1)
5.1.1.2 Influence from inlet subcooling
36(1)
5.1.1.3 Influence from fluid
36(1)
5.1.1.4 Influence from test section inlet orifice
37(1)
5.1.2 Two-phase pressure drop model validation
38(1)
5.1.2.1 Homogeneous equilibrium model (HOM)
39(1)
5.1.2.2 Separated flow model
40(6)
5.1.3 Two-phase flow local pressure and temperature predictions
46(4)
5.2 Steady-state heat transfer
50(1)
5.2.1 Effect of heat flux
50(1)
5.2.2 Effect of mass flux
51(1)
5.2.3 Effect of inlet subcooling
52(1)
5.2.4 Effect of saturation temperature
52(1)
5.2.5 Effect of fluid
53(1)
5.2.6 Effect of inlet orifice
54(1)
5.3 Wall temperature response under transient heat loads
55(1)
5.3.1 Thermal and flow visualization during a cold startup
55(1)
5.3.1.1 Effect of test section
59(1)
5.3.1.2 Effect of pulse magnitude
60(1)
5.3.1.3 Effect of mass flux
61(1)
5.3.1.4 Effect of inlet subcooling
64(1)
5.3.1.5 Effect of outlet saturation temperature
65(1)
5.3.1.6 Effect of fluid
66(1)
5.3.1.7 Effect of surface roughness
67(1)
5.3.2 Heat flux periodic variation
67(1)
5.3.2.1 Effect of pulse period
67(1)
5.3.2.2 Effect of mass flux
69(1)
5.4 Transient local heat transfer coefficients
69(1)
5.4.1 Case study presentation
69(1)
5.4.2 Data reduction method 1-3D-TDMA
71(1)
5.4.3 Method 2-2D-controlled
73(1)
5.4.4 Pressure drop
76(1)
5.4.5 Heat transfer
78(1)
5.4.5.1 Local/Mean heat transfer coefficient transient variations
78(1)
5.4.5.2 Heat transfer coefficient profile variations
80(2)
6 Local Heat Transfer Model Prediction
82(10)
6.1 Comparison with existing methods
82(1)
6.1.1 Saturated flow boiling region
82(1)
6.1.2 Subcooled flow boiling region
82(1)
6.1.3 Single-phase thermal developing region
82(4)
6.2 New local heat transfer models development
86(1)
6.2.1 Single-phase thermal developing flow
86(1)
6.2.2 Saturated flow boiling
87(1)
6.2.3 Subcooled flow boiling
87(1)
6.3 Global prediction from the new flow pattern-based model
88(4)
7 Conclusion
92(2)
Acknowledgments
94(1)
Nomenclature
94(3)
References
97(6)
Chapter 2 Flow Boiling of Refrigerant-Oil Mixtures Inside Smooth and Microfin Tubes
103(66)
Haitao Hu
1 Introduction
103(2)
2 Heat Transfer Measurement for Smooth Tubes
105(21)
2.1 Refrigerant-oil mixture flow boiling in straight smooth tube
105(1)
2.1.1 R12-oil mixture in straight smooth tube
105(1)
2.1.2 R22-oil mixture in straight smooth tube
106(1)
2.1.3 R134a-oil mixture in straight smooth tube
109(1)
2.1.4 R407C-oil mixture in straight smooth tube
112(1)
2.1.5 CO2-oil mixture in straight smooth tube
112(1)
2.1.6 R410A-oil mixture in straight smooth tube
118(1)
2.1.7 R717-oil mixture in straight smooth tube
123(1)
2.2 Refrigerant-oil mixture flow boiling in C-shape curved smooth tube
124(2)
3 Heat Transfer Coefficient Correlations for Smooth Tubes
126(5)
4 Pressure Drop Measurement in Smooth Tubes
131(8)
4.1 R22-oil mixture
131(1)
4.2 R134a-oil mixture
132(2)
4.3 R410A-oil mixture
134(3)
4.4 R407C-oil mixture
137(2)
4.5 CO2-oil mixture
139(1)
5 Pressure Drop Correlations in Smooth Tubes
139(2)
6 Heat Transfer Measurement for Microfin Tubes
141(9)
6.1 R410A-oil mixture
141(1)
6.2 R22-oil mixture
142(2)
6.3 CO2-oil mixture
144(1)
6.4 R407C-oil mixture
145(4)
6.5 R134a-oil mixture
149(1)
7 Heat Transfer Coefficient Correlations for Microfin Tubes
150(4)
8 Pressure Drop Measurement for Microfin Tubes
154(3)
8.1 R410A-oil mixture
154(1)
8.2 R407C-oil mixture
155(2)
8.3 R134a-oil mixture
157(1)
9 Pressure Drop Correlations for Horizontal Microfin Tubes
157(5)
Nomenclature
162(1)
References
163(6)
Chapter 3 Convective Condensation of Refrigerant-Oil Mixtures Inside Smooth and Microfin Tubes
169(32)
Haitao Hu
1 Introduction
169(1)
2 Heat Transfer Measurement for Smooth Tubes
170(5)
2.1 R12-oil mixture
170(1)
2.2 R22-oil mixture
170(1)
2.3 R134a-oil mixture
171(2)
2.4 R410A-oil mixture
173(2)
3 Heat Transfer Coefficient Correlations for Smooth Tubes
175(2)
4 Pressure Drop Measurement for Smooth Tubes
177(1)
4.1 R134a-oil mixture
177(1)
4.2 R410A-oil mixture
177(1)
5 Pressure Drop Correlations for Smooth Tubes
178(2)
6 Heat Transfer Measurement for Microfin Tubes
180(9)
6.1 R134a-oil mixture
180(1)
6.2 R410A-oil mixture
180(3)
6.3 R22-oil mixture
183(3)
6.4 R407C-oil mixture
186(1)
6.5 R404A-oil mixture
187(2)
7 Heat Transfer Coefficient Correlations for Microfin Tubes
189(1)
8 Pressure Drop Measurements for Microfin Tubes
189(6)
8.1 R410A-oil mixture
189(4)
8.2 R22-oil mixture
193(1)
8.3 R407C-oil mixture
194(1)
8.4 R404A-oil mixture
195(1)
9 Pressure Drop Correlations for Microfin Tubes
195(1)
Nomenclature
196(1)
References
197(4)
Chapter 4 Flow Boiling of Refrigerant-Oil Mixtures Inside Metal-Foam Filled Tubes
201(22)
Haitao Hu
1 Introduction
201(1)
2 Flow Pattern Observation and Flow Pattern Map
202(1)
3 Heat Transfer Measurement and Correlation for Refrigerant-Oil Mixtures in Metal-Foam Filled Tube
202(10)
3.1 Heat transfer measurement
202(6)
3.2 Heat transfer correlations of refrigerant-oil mixtures in metal-foam filled tube
208(4)
4 Pressure Drop Measurement and Correlation for Refrigerant-Oil Mixtures in Metal-Foam Filled Tube
212(6)
4.1 Pressure drop measurement
212(4)
4.2 Pressure drop correlations of refrigerant-oil mixtures in metal-foam filled tube
216(2)
Nomenclature
218(1)
References
219(4)
Chapter 5 Nucleate Pool Boiling of Nanorefrigerant and Oil Mixtures
223(20)
Haitao Hu
1 Introduction
223(1)
2 Heat Transfer Measurements for Nanorefrigerant and Oil Mixtures with Spherical Nanoparticles
224(11)
2.1 Effect of CuO nanoparticles
224(1)
2.2 Effect of diamond nanoparticles
224(3)
2.3 Effect of A1203 nanoparticles
227(5)
2.4 Effect of Cu nanoparticles
232(1)
2.5 Effect of surfactant type
233(2)
3 Heat Transfer Measurement for Nanorefrigerant and Oil Mixture with Cylindrical Carbon Nanotubes
235(1)
4 Prediction Correlations for Pool Boiling Heat Transfer of Nanorefrigerant and Oil Mixtures with Nanoparticles
236(4)
Nomenclature
240(1)
References
241(2)
Chapter 6 A Review of Condensation in Inclined Tubes
243(38)
J.P. Meyer
Jaco Dirker
Seyyed Mohammad Ali Noori Rahim Abadi
1 Introduction
243(2)
2 Related Literature on Condensation at Inclination Angles
245(1)
3 Condensation in Tubes at Different Inclination Angles
246(17)
3.1 Flow map regime and heat transfer coefficient
247(5)
3.2 Pressure drop
252(1)
3.3 Void fraction
253(4)
3.4 Analytical model
257(6)
4 Condensation at Different Saturation Temperatures
263(4)
4.1 Heat transfer coefficients
263(2)
4.2 Pressure drop
265(2)
5 Numerical Simulation of Condensation Inside a Smooth Inclined Tube
267(10)
6 Conclusion
277(1)
References
277(4)
Index
281
Encyclopedia of Two-phase Heat Transfer and Flow III: Volume 3-Micro-Two-Phase Cooling System
Preface
v
About the Editor-in-Chief
vii
List of Contributors
ix
Chapter 1 A Figure of Merit for Mobile Device Thermal Management
1(22)
Victor Chiriac
Steve Molloy
Jon J. Anderson
Ken Goodson
1 Introduction
1(3)
2 Supporting Equations
4(1)
3 Defining the Coefficient of Thermal Spreading (CTS)
5(5)
3.1 Measuring the CTS
5(2)
3.2 Example applications of the coefficient of thermal spreading (CTS)
7(2)
3.3 Quantitative design targets using the CTS
9(1)
4 Why Is the CTS Important?
10(1)
4.1 How can we improve the CTS?
10(1)
4.2 Alternative CTS formulations?
11(1)
5 CTS Variation with Technology, Power for Fixed Mobile Platform (Tablet)
11(1)
6 CTS Versus Power Variation with Mobile Device Platform: Fixed Technology (Same VC Size for All)
12(5)
7 Optimized CTS Versus Power Variation with Platform (Large VC and Tablet)
17(2)
8 Summary: CTS of Mobile Devices at Various Powers and Thermal Spreading Technologies
19(1)
9 Concluding Remarks
20(1)
Acknowledgments
20(1)
References
21(2)
Chapter 2 Embedded Two-Phase Cooling of Ultra-High Flux Electronics Using FEEDS Manifold-Microchannel Heat Sinks
23(16)
Raphael K. Mandel
Michael M. Ohadi
1 Introduction
23(3)
2 Literature Survey
26(1)
3 FEEDS Experiments and Results
27(9)
4 Conclusion
36(1)
Acknowledgments
36(1)
References
36(3)
Chapter 3 Hierarchical Systems Level Thermal Management for Multiple High Transient Heat Loads
39(52)
John T. Wen
Daniel T. Pollock
Zehao Yang
1 Introduction
40(2)
2 Modeling
42(16)
2.1 Nonlinear dynamic model for multi-evaporator VCC systems
42(6)
2.2 Critical heat flux and critical quality
48(1)
2.2.1 Critical heat flux
48(1)
2.2.2 Critical quality
48(1)
2.2.3 Heat transfer coefficient at evaporator exit
51(1)
2.3 Coefficient of performance
51(2)
2.4 A control-theoretic input-output model
53(1)
2.4.1 State-space formulation
53(1)
2.4.2 Steady-state analysis
54(1)
2.4.3 Local dynamical analysis
55(3)
3 Hierarchical Control Architecture
58(2)
4 Selection of Operating Point with Static Optimization
60(1)
5 Robust Feedback Control with Disturbance Rejection
61(15)
5.1 Inner/outer-loop control design
64(1)
5.1.1 Control architecture
64(1)
5.1.2 Selection of operating points for model linearization
64(1)
5.1.3 Inner-loop design
65(1)
5.1.4 Outer-loop design
67(3)
5.2 Multivariable control design
70(1)
5.2.1 Control architecture
70(1)
5.2.2 Clustering of linearized systems
73(1)
5.2.3 Robust controller design and gain scheduling
73(1)
5.3 Controller blending
74(1)
5.3.1 Robust controller combined with static input scheduling
75(1)
6 Predictive Feedforward Control
76(9)
6.1 Model predictive control
76(1)
6.1.1 Objective function
78(1)
6.1.2 Receding horizon optimization: Effect of disturbance pulse magnitude and prediction horizon
80(1)
6.1.3 Dynamic prediction horizon
80(2)
6.2 Quasi-static predictive control
82(3)
7 Summary and Future Directions
85(1)
Acknowledgments
86(1)
References
86(5)
Chapter 4 Application of Two-Phase Loop Thermosyphons and Pulsating Heat-Pipes to Power Electronics Cooling
91(66)
Bruno Agostini
Daniele Torresin
1 Power Electronics Cooling
91(1)
2 Compact Thermosyphon Heat Exchanger
92(18)
2.1 Introduction
92(1)
2.2 ABB two-phase cooling technology
93(2)
2.3 Performances
95(1)
2.3.1 Base to air thermosyphon
95(1)
2.3.2 Air to air
101(5)
2.4 Modeling
106(1)
2.4.1 Simplifications in the case of a mini-channel thermosyphon
106(1)
2.4.2 One-dimensional model
107(1)
2.4.3 Modeling of stacked thermosyphons
109(1)
3 Compact Pulsating Heat Pipe Heat Exchanger
110(40)
3.1 Introduction
110(2)
3.2 Technology
112(1)
3.3 Performances
113(1)
3.3.1 Base to air pulsating heat pipe
113(1)
3.3.2 Base to air pulsating heat pipe at extreme fluid temperatures
117(1)
3.3.3 Base to air pulsating heat pipe with symmetrical condenser design
128(1)
3.3.4 Base to air pulsating heat pipe with high number of turns
135(1)
3.3.5 Air to air pulsating heat pipe
143(5)
3.4 Modeling
148(2)
4 Conclusions and Future Research
150(1)
Acknowledgments
150(1)
Nomenclature
151(1)
References
152(5)
Chapter 5 Two-Phase Thermosyphon Cooling of Datacenters
157(64)
Nicolas Lamaison
Chin Lee Ong
Jackson B. Marcinichen
John R. Thome
1 Introduction
158(9)
1.1 Context
158(1)
1.2 Thermosyphon principles
159(2)
1.3 Competing technologies
161(2)
1.4 State-of-the-art review of thermosyphons
163(1)
1.4.1 Experimental investigations
163(1)
1.4.2 Modeling studies
166(1)
1.5 Presentation of the chapter
166(1)
2 Experimental Test Bench
167(14)
2.1 Description
168(2)
2.2 Experimental results and analysis
170(1)
2.2.1 Experimental campaign
170(1)
2.2.2 Mass flow rate
171(1)
2.2.3 Pumped loop versus thermosyphon thermal performance
173(1)
2.2.4 Thermosyphon filling ratio and loop pressure
175(6)
3 Dynamic Simulation Code
181(11)
3.1 Code description
181(1)
3.1.1 Flow model and general modeling assumptions
181(1)
3.1.2 Evaporator, micro/tube-in-tube condenser and piping
182(1)
3.1.3 Parallel branch flow distribution
185(1)
3.1.4 Liquid accumulator model
186(1)
3.1.5 Flowchart
187(2)
3.2 Code validation
189(1)
3.2.1 Steady-state validation
189(1)
3.2.2 Dynamic validation
191(1)
4 Application to 2U Servers
192(12)
4.1 Envisioned solution
192(1)
4.1.1 Server considered
192(1)
4.1.2 Geometry considered
193(1)
4.2 Simulations and results
193(1)
4.2.1 Presentation of simulated cases
193(1)
4.2.2 Multiplicity of the results
194(1)
4.2.3 Influence of various parameters
195(1)
4.2.4 Pressure drop breakdown for case 1
199(1)
4.2.5 Unbalanced heat load in parallel CPUs
200(1)
4.2.6 Dynamic disturbances
203(1)
5 Thermo-Economic Analysis
204(10)
5.1 Considerations
205(4)
5.2 Analysis and results
209(1)
5.2.1 Frame of the study
209(1)
5.2.2 Capital expenses of the thermosyphon cooling system
209(1)
5.2.3 Operating expenses of thermosyphon and air cooling systems
211(1)
5.2.4 Rating metrics and results
212(2)
6 Conclusions
214(2)
References
216(5)
Chapter 6 Two-Phase Jet Impingement: Liquid-Vapor Interactions and Heat Transfer Mapping for Multiscale Surface Enhancement Design
221(58)
Matthew J. Rau
Suresh V. Garimella
1 Introduction
221(10)
1.1 Single-phase jet impingement
222(1)
1.1.1 Single circular and slot impinging jets
222(1)
1.1.2 Arrays of circular and slot impinging jets
227(1)
1.2 Two-phase jet impingement
228(1)
1.2.1 Hydrodynamic effects on local heat transfer
230(1)
2 Array Geometry and Nozzle Shape Effects on Local Two-Phase Heat Transfer
231(12)
2.1 High-resolution heat transfer measurement implementation
232(1)
2.2 Two-phase heat transfer from confined circular impinging jets
233(5)
2.3 Two-phase heat transfer from a cross-shaped impinging jet
238(2)
2.4 Pressure drop
240(3)
3 Boiling-Induced Flow Modifications in Jet Impingement
243(15)
3.1 Flow modification with increasing heat flux
244(4)
3.2 Bubble dynamics and effect of confinement gap height
248(6)
3.3 Turbulence modulation
254(4)
4 Enhancement of Two-Phase Jet Impingement Heat Transfer
258(12)
4.1 Surface enhancement design for two-phase jet impingement heat transfer
258(2)
4.2 Complementary hybrid surface enhancement design
260(1)
4.3 Effects of surface enhancements on jet impingement heat transfer
261(5)
4.4 Performance enhancement with complementary impingement
266(2)
4.5 Pressure drop with surface enhancements
268(2)
5 Conclusions
270(1)
Acknowledgments
271(1)
Nomenclature
271(2)
References
273(6)
Chapter 7 Experimental Evaluation of a Passive Thermosyphon Cooling System for Power Electronics
279(42)
Filippo Cataldo
John R. Thome
1 Introduction
279(3)
2 Experimental Evaluation and Simulation of the Evaporator in Pump-Driven Tests
282(24)
2.1 Evaporator design
282(3)
2.2 Test facility
285(1)
2.2.1 Test section
285(1)
2.2.2 Main loop and instrumentation
286(1)
2.3 Uncertainty analysis
287(1)
2.3.1 Uncertainty propagation on the energy balance
288(1)
2.4 Experimental data in pump mode tests
289(1)
2.4.1 Single-phase flow data
289(1)
2.4.2 Two-phase flow data
291(1)
2.4.3 Comparison between refrigerant two-phase flow and water single-phase flow
294(1)
2.4.4 Two-phase flow data when varying the mass flux
294(2)
2.5 Predictive method for the evaporator thermal performance
296(1)
2.5.1 Estimation of the pressure drop in the outlet manifold
304(1)
2.6 Comments
304(2)
3 Experimental Evaluation of the Condenser in Pump-Driven Tests
306(2)
3.1 Condenser design
306(1)
3.2 Single-phase flow data
306(2)
3.3 Two-phase flow data
308(1)
4 Experimental Evaluation of the Thermosyphon System
308(8)
4.1 Thermal performance
310(1)
4.2 Hydraulic performance
311(3)
4.3 Comments
314(2)
Acknowledgments
316(1)
References
316(5)
Chapter 8 Thermally Induced Oscillating Flow Inside a Single Capillary Tube: A Step towards the Understanding of the PHP Behavior
321(34)
Frederic Lefevre
Sameer Khandekar
Jocelyn Bonjour
1 Introduction
321(2)
2 Transport Phenomena in a "Unit-Cell": Qualitative Features
323(4)
3 Primary Experimental Oscillations Inside a Partially Transparent Unit-Cell System
327(5)
3.1 The first generation of the unit-cell experimental set-up
327(1)
3.2 Frequency and amplitude analyses for methanol and pentane
328(2)
3.3 Interim summary
330(2)
4 A Fully Transparent Experiment to Observe and Analyze the Behavior of the Unit-Cell System
332(19)
4.1 The second generation of the unit-cell experiment
332(3)
4.2 A four stroke cycle
335(1)
4.3 Coupled dynamics of the liquid film evaporation and dynamics of the oscillations
336(3)
4.4 Theoretical analyses
339(1)
4.4.1 Estimation of the film thickness variation from experimental data
339(1)
4.4.2 Dynamics of the liquid film
341(1)
4.4.3 Influence of both tube and fluid properties
345(1)
4.4.4 Modeling of the unit-cell
346(1)
4.4.5 Pressure drops in oscillating flows
349(1)
4.5 Interim summary
350(1)
5 Conclusions
351(1)
References
351(4)
Index
355
Encyclopedia of Two-phase Heat Transfer and Flow III: Volume 4-Special Boiling Topics
Preface
v
About the Editor-in-Chief
vii
List of Contributors
ix
Chapter 1 Wettability Effect on Pool Boiling: A Review
1(62)
Ileana Malavasi
Emanuele Teodori
Ana S. Moita
Antonio L.N. Moreira
Marco Marengo
1 Introduction
1(4)
2 Wettability and Surface Topography
5(4)
3 Fundamentals of Bubble Nucleation: The Role of Wettability
9(11)
3.1 Nucleation, boiling onset and bubble dynamics
9(9)
3.2 Mutual bubble interactions
18(2)
4 Strategies to Alter Surface Wettability
20(18)
4.1 Modification of the liquid properties (surfactants addition and nanofluids)
20(5)
4.2 Modification of surface chemistry
25(8)
4.3 Modification of surface topography
33(1)
4.3.1 Surfaces with microporous
36(1)
4.3.2 Surfaces with free particles
37(1)
5 Theoretical Approaches Describing the Role of Wettability
38(5)
6 Final Remarks
43(1)
Acknowledgments
44(1)
References
45(18)
Chapter 2 How to Engineer Surfaces to Control and Optimize Boiling, Condensation and Frost Formation?
63(96)
Daniel Attinger
Amy R. Betz
Christophe Frankiewicz
Ranjan Ganguly
Thomas M. Schutzius
Mohamed Elsharkawy
Arindam Das
Chang-Jin "CJ" Kim
Constantine M. Megaridis
1 Introduction
64(1)
2 Characterization of Phase Change Heat Transfer
65(21)
2.1 Characteristics of optimum surfaces for boiling heat transfer
70(1)
2.1.1 Nucleation
71(1)
2.1.2 Nucleate boiling
73(2)
2.2 Characteristics of optimum surfaces for condensation heat transfer
75(6)
2.3 Characteristics of optimum surfaces for freezing and desublimation
81(1)
2.3.1 Freezing/Icing
82(1)
2.3.2 Desublimation/Frosting
84(2)
3 Fabrication of Textured Surfaces of Different Materials
86(6)
3.1 Traditional machining
86(1)
3.2 Coating
87(1)
3.3 Lithography
88(3)
3.4 Multiscale textures
91(1)
4 Wettability Engineering
92(13)
5 Review of Engineered Surfaces for Multiphase Flow Applications
105(28)
5.1 Engineered surfaces for boiling heat transfer
105(10)
5.2 Engineered surfaces for condensation heat transfer
115(9)
5.3 Engineered surfaces for applications with ice or frost
124(9)
6 Summary and Outlook
133(3)
Acknowledgments
136(1)
References
137(22)
Chapter 3 Regime-Based Analysis of Thermal Enhancement in Internally-Grooved Tubes
159(92)
Darin James Sharar
Avram Bar-Cohen
1 Introduction
159(4)
1.1 Two-phase surface enhancements and internally-grooved tubes
160(2)
1.2 Goals and outline
162(1)
2 Two-Phase Flow Boiling Fundamentals
163(7)
2.1 Diabatic two-phase flow patterns and dependence on heat transfer
164(2)
2.2 Two-phase flow pattern maps
166(2)
2.3 Smooth tube regime-based heat transfer models
168(2)
3 Fundamental Studies of Flow Patterns and Heat Transfer in Internally-Grooved Tubes
170(20)
3.1 Flow regime quantification
170(1)
3.2 Studies on conventional internally-grooved tubes
171(1)
3.2.1 Flow regime transition mechanisms
171(1)
3.2.2 Halogenated fluids at standard pressure and temperature
175(1)
3.2.3 Geometric considerations
182(1)
3.2.4 Refrigerant/Oil Mixtures
183(1)
3.3 Studies on high reduced pressure
183(1)
3.4 Studies on small diameter internally-grooved tubes
184(1)
3.5 Flow regime maps and regime-inspired heat transfer coefficient correlations for internally-grooved tubes
184(4)
3.6 Section summary
188(2)
4 New Flow Regime Map and Heat Transfer Coefficient Correlation for Internally-Grooved Tubes
190(17)
4.1 Traditional Wojtan et al. flow regime map for smooth tubes
190(4)
4.2 Modified Sharar et al. flow regime map for internally-grooved tubes
194(2)
4.3 Traditional Wojtan et al. heat transfer coefficient correlation
196(4)
4.4 Modified Sharar and Bar-Cohen heat transfer coefficient correlation
200(2)
4.5 Model simulation
202(4)
4.6 Section summary
206(1)
5 Two-Phase Data and Discussion
207(31)
5.1 Experimental setup and procedures
208(1)
5.1.1 Diabatic test sections and IR imaging
208(1)
5.1.2 Experimental ranges
209(1)
5.1.3 Data acquisition
210(1)
5.1.4 Total internal reflection flow regime quantification
210(4)
5.2 8.84 mm smooth and internally-grooved tubes
214(1)
5.2.1 Influence of mass flux and flow regime
214(1)
5.2.2 Influence of heat flux
218(2)
5.3 Tabulation of flow regime modeling results
220(1)
5.4 Enhancement ratio
221(1)
5.5 Statistical assessment of the heat transfer coefficient correlations
222(1)
5.5.1 Smooth tubes
223(1)
5.5.2 Internally-grooved tubes
226(4)
5.6 Comparison to data from the literature
230(1)
5.6.1 Flow regime data
230(1)
5.6.2 Heat transfer coefficient data
234(3)
5.7 Applicability of the Sharar et al. model
237(1)
6 Conclusions and Future Work
238(3)
6.1 Future work
240(1)
Acknowledgments
241(1)
References
241(10)
Chapter 4 Two-Phase Flow-Induced Vibrations in Tube Bundles Under Crossflow
251(84)
Ricardo Alvarez-Briceno
Leopoldo P.R. de Oliveira
Fabio Toshio Kanizawa
Gherhardt Ribatski
1 Introduction-The FIV Problem
252(2)
2 Two-Phase Flow Parameters
254(8)
2.1 Two-phase flow characterization
254(1)
2.1.1 Flow patterns
255(5)
2.2 Void fraction
260(2)
3 Dynamic Parameters
262(41)
3.1 Natural frequency and vibration mode shape
262(1)
3.1.1 Single span tube
264(1)
3.1.2 Single span tube under axial force
267(1)
3.1.3 Multiple span tube
271(1)
3.1.4 U-B end region
273(1)
3.1.5 Boundary conditions for the U-tube problem
277(1)
3.1.6 Approximate solutions and common cases for the U-tube problem
278(2)
3.2 Hydrodynamic mass
280(2)
3.3 Damping
282(1)
3.3.1 Damping ratio: General definitions
283(1)
3.3.2 Structural damping
286(1)
3.3.3 Fluid damping
291(1)
3.3.4 Damping in two-phase flow
295(1)
3.3.5 TEMA design guidelines for damping
300(2)
3.4 Concluding remarks about dynamic parameters
302(1)
4 Vibration Excitation Mechanisms
303(25)
4.1 Fluid-elastic instability
306(1)
4.1.1 Mechanisms of fluid-elastic instability
307(1)
4.1.2 Fluid-elastic instability models
316(1)
4.1.3 Fluid-elastic instability in two-phase flow
320(1)
4.2 Turbulence-induced vibration
321(1)
4.2.1 Turbulence-induced vibration in single-phase flow: Design guidelines
321(1)
4.2.2 Turbulence-induced vibration in two-phase flow: Design guidelines
325(3)
5 Conclusion
328(1)
References
329(6)
Chapter 5 Two-Phase Thermal Management of Silicon Detectors for High Energy Physics
335(72)
Paolo Petagna
Bart Verlaat
Andrea Francescon
1 Cooling Issues for Silicon Detectors in High Energy Physics
335(12)
1.1 Particle detectors at colliding accelerator beams
336(1)
1.2 Silicon trackers
337(3)
1.3 Thermal management issues for silicon trackers
340(2)
1.4 Modern trends
342(1)
1.4.1 System level
342(1)
1.4.2 Local thermal management
343(4)
2 CO2 Systems for Tracking Detectors
347(35)
2.1 Two-phase CO2 pumped loops
347(1)
2.1.1 Introduction to CO2 cooling for a silicon detector
347(1)
2.1.2 CO2 evaporative cooling
348(1)
2.1.3 2-phase accumulator controlled loop (2-PACL) introduction
350(3)
2.2 CO2 cooling system design
353(1)
2.2.1 Evaporator design
353(1)
2.2.2 CoBra simulation
354(1)
2.2.3 Parallel flow design
356(1)
2.2.4 Inlet and outlet optimization
358(1)
2.2.5 Detector design optimization
360(1)
2.3 2PACL operation and design
361(1)
2.3.1 2PACL method
361(1)
2.3.2 2PACL state-points in the pressure enthalpy diagram
364(1)
2.3.3 Liquid sub-cooling
365(1)
2.3.4 Two-phase accumulator
366(1)
2.3.5 Single-phase operation
366(1)
2.3.6 Accumulator geometrical design
368(1)
2.3.7 Carbon dioxide filling charge in an accumulator
369(1)
2.3.8 Accumulator sizing in the P-D diagram
371(1)
2.3.9 Accumulator as a storage vessel
372(1)
2.3.10 Accumulator as compensator
373(1)
2.3.11 2PACL system sizing
375(1)
2.3.12 Optimizing the accumulator volume
376(1)
2.3.13 CO2 transfer lines
377(5)
3 Silicon microchannel evaporators for pixel detector cooling
382(25)
3.1 Silicon microchannel devices manufacturing
383(2)
3.2 Design of a low-mass silicon microchannel evaporator
385(4)
3.3 Single-phase characterization
389(1)
3.4 Flow boiling results
390(4)
3.5 Interconnection of silicon microchannel frames
394(1)
3.5.1 Fluidic connectors for microchannel devices
394(1)
3.5.2 Interconnected silicon frames for the thermal management of future vertex detector
398(1)
3.5.3 Single-phase characterization
400(1)
3.5.4 Flow boiling tests
402(3)
3.6 Silicon microstructured evaporators and CO2
405(2)
Acknowledgments
407(1)
References
407(6)
Index
413