Muutke küpsiste eelistusi

E-raamat: Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 1, Univariate Orthogonal Polynomials

Edited by (University of Central Florida), Assisted by (Katholieke Universiteit Leuven, Belgium)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 82,73 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Encyclopedia of Special Functions provides an extensive update of the Bateman Manuscript Project. The three volumes will be indispensable for all scientists who use special functions in their research. Volume 1 provides detailed and up-to-date information on orthogonal polynomials and moment problems.

This is the first of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 1 contains most of the material on orthogonal polynomials, from the classical orthogonal polynomials of Hermite, Laguerre and Jacobi to the Askey–Wilson polynomials, which are the most general basic hypergeometric orthogonal polynomials. Separate chapters cover orthogonal polynomials on the unit circle, zeros of orthogonal polynomials and matrix orthogonal polynomials, with detailed results about matrix-valued Jacobi polynomials. A chapter on moment problems provides many examples of indeterminate moment problems. A thorough bibliography rounds off what will be an essential reference.

Muu info

Extensive update of the Bateman Manuscript Project. Volume 1 covers orthogonal polynomials and moment problems.
List of contributors
ix
Preface xi
1 Preliminaries
1(15)
1.1 Analytic Facts
1(1)
1.2 Hypergeometric Functions
2(5)
1.3 Summation Theorems and Transformations
7(1)
1.4 q-Series
8(7)
1.5 Theta Functions
15(1)
1.6 Orthogonality
15(1)
2 General Orthogonal Polynomials
16(35)
2.1 Basic Facts
16(6)
2.2 Numerators and Quadratures
22(2)
2.3 The Spectral Theorem
24(3)
2.4 Continued Fractions
27(3)
2.5 Modifications of Measures and Recursions
30(4)
2.6 Linearization and Connection Relations
34(3)
2.7 Addition Theorems
37(2)
2.8 Differential Equations
39(5)
2.9 Discriminants and Electrostatics
44(3)
2.10 Functions of the Second Kind
47(1)
2.11 Dual Systems
48(2)
2.12 Moment Representations and Determinants
50(1)
3 Jacobi And Related Polynomials
51(49)
3.1 Recursions and Representations
51(5)
3.2 Generating Functions
56(3)
3.3 Jacobi Functions of the Second Kind
59(4)
3.4 Routh-Jacobi Polynomials
63(1)
3.5 Ultraspherical (Gegenbauer) Polynomials
63(4)
3.6 Chebyshev Polynomials
67(4)
3.7 Legendre Polynomials
71(3)
3.8 Laguerre and Hermite Polynomials
74(8)
3.9 The Complex Hermite Polynomials
82(2)
3.10 Hermite Functions
84(1)
3.11 Multilinear Generating Functions
85(3)
3.12 Integral Representations
88(2)
3.13 Asymptotics
90(5)
3.14 Relative Extrema of Classical Polynomials
95(1)
3.15 The Bessel Polynomials
96(4)
4 Recursively Denned Polynomials
100(19)
4.1 Birth and Death Process Polynomials
100(2)
4.2 Polynomials of Pollaczek Type
102(6)
4.3 Associated Laguerre and Hermite Polynomials
108(1)
4.4 Associated Jacobi Polynomials
109(5)
4.5 Sieved Polynomials
114(5)
5 Wilson And Related Polynomials
119(10)
5.1 The Meixner-Pollaczek Polynomials
119(2)
5.2 Wilson Polynomials
121(3)
5.3 Continuous Dual Hahn Polynomials
124(2)
5.4 Continuous Hahn Polynomials
126(3)
6 Discrete Orthogonal Polynomials
129(28)
6.1 Meixner and Charlier Polynomials
129(2)
6.2 Hahn, Dual Hahn, and Krawtchouk Polynomials
131(7)
6.3 Difference Equations
138(3)
6.4 Lommel Polynomials and Related Polynomials
141(4)
6.5 An Inverse Operator
145(1)
6.6 g-Sturm-Liouville Problems
146(2)
6.7 The Al-Salam-Carlitz Polynomials
148(3)
6.8 q-Jacobi Polynomials
151(3)
6.9 4-Hahn Polynomials
154(2)
6.10 A Family of Biorthogonal Rational Functions
156(1)
7 Some G-Orthogonal Polynomials
157(21)
7.1 g-Hermite Polynomials
157(4)
7.2 g-Ultraspherical Polynomials
161(7)
7.3 Asymptotics
168(1)
7.4 Integrals and the Rogers-Ramanujan Identities
168(2)
7.5 A Generalization of the Schur Polynomials
170(2)
7.6 Associated g-Ultraspherical Polynomials
172(3)
7.7 Two Systems of q-Orthogonal Polynomials
175(3)
8 The Askey-Wilson Family Of Polynomials
178(21)
8.1 Al-Salam-Chihara Polynomials
178(3)
8.2 The Askey-Wilson Polynomials
181(4)
8.3 The Askey-Wilson Equation
185(2)
8.4 Continuous g-Jacobi Polynomials and Discriminants
187(3)
8.5 q-Racah Polynomials
190(2)
8.6 Linear and Multilinear Generating Functions
192(3)
8.7 Associated Askey-Wilson Polynomials
195(4)
9 Orthogonal Polynomials On The Unit Circle
199(43)
L. Golinskii
9.1 Definitions and Basic Properties
199(3)
9.2 Szego Recurrence Relations and Verblunsky Coefficients
202(5)
9.3 Szego's Theory and Its Extensions
207(10)
9.4 Zeros of OPUC
217(4)
9.5 CMV Matrices - Unitary Analogues of Jacobi Matrices
221(3)
9.6 Differential Equations
224(2)
9.7 Examples of OPUC
226(5)
9.8 Modification of Measures
231(11)
10 Zeros Of Orthogonal Polynomials
242(27)
A. Laforgia
M. Muldoon
10.1 Introduction
242(1)
10.2 General Results on Zeros
242(7)
10.3 Jacobi Polynomials
249(6)
10.4 Ultraspherical Polynomials
255(4)
10.5 Legendre Polynomials
259(1)
10.6 Laguerre Polynomials
260(4)
10.7 Hermite Polynomials and Functions
264(3)
10.8 Other Orthogonal Polynomials
267(2)
11 The Moment Problem
269(38)
C. Berg
J. S. Christiansen
11.1 Hamburger Moment Problems
269(11)
11.2 Stieltjes Moment Problems
280(5)
11.3 Examples of Indeterminate Moment Problems
285(22)
12 Matrix-Valued Orthogonal Polynomials And Differential Equations
307(27)
A. Duran
F. A. Grunbaum
12.1 Matrix Polynomials and Matrix Orthogonality
307(8)
12.2 Matrix-Valued Orthogonal Polynomials Satisfying Second-Order Differential Equations
315(19)
13 Some Families Of Matrix-Valued Jacobi Orthogonal Polynomials
334(23)
F. A. Griinbaum
I. Pacharoni
J. A. Tirao
13.1 Introduction
334(1)
13.2 Spherical Functions
334(3)
13.3 Matrix-Valued Spherical Functions Associated to P2(C)
337(3)
13.4 The Spherical Functions as Matrix-Valued Hypergeometric Functions
340(4)
13.5 Matrix Orthogonal Polynomials Arising from Spherical Functions
344(4)
13.6 The Matrix Jacobi Polynomials Arising from Pd(C)
348(6)
13.7 Miscellanea
354(3)
References 357(28)
Index 385
Mourad E. H. Ismail is Research Professor at the University of Central Florida.