Preface |
|
xxix | |
Acknowledgments |
|
xxxi | |
Contributors |
|
xxxiii | |
|
1 Power Allocation And Task Scheduling On Multiprocessor Computers With Energy And Time Constraints |
|
|
1 | (38) |
|
|
|
1 | (4) |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.1.3 Dynamic Power Management |
|
|
3 | (1) |
|
1.1.4 Task Scheduling with Energy and Time Constraints |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (5) |
|
1.2.1 Power Consumption Model |
|
|
5 | (1) |
|
1.2.2 Problem Definitions |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.2.6 Problem Decomposition |
|
|
9 | (1) |
|
1.2.7 Types of Algorithms |
|
|
10 | (1) |
|
|
10 | (6) |
|
1.3.1 Schedule Length Minimization |
|
|
10 | (1) |
|
1.3.1.1 Uniprocessor computers |
|
|
10 | (1) |
|
1.3.1.2 Multiprocessor computers |
|
|
11 | (1) |
|
1.3.2 Energy Consumption Minimization |
|
|
12 | (1) |
|
1.3.2.1 Uniprocessor computers |
|
|
12 | (1) |
|
1.3.2.2 Multiprocessor computers |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
1.3.5 Energy-Delay Trade-off |
|
|
15 | (1) |
|
1.4 Pre-Power-Determination Algorithms |
|
|
16 | (12) |
|
|
16 | (1) |
|
1.4.2 Performance Measures |
|
|
17 | (1) |
|
1.4.3 Equal-Time Algorithms and Analysis |
|
|
18 | (1) |
|
1.4.3.1 Schedule length minimization |
|
|
18 | (1) |
|
1.4.3.2 Energy consumption minimization |
|
|
19 | (1) |
|
1.4.4 Equal-Energy Algorithms and Analysis |
|
|
19 | (1) |
|
1.4.4.1 Schedule length minimization |
|
|
19 | (2) |
|
1.4.4.2 Energy consumption minimization |
|
|
21 | (1) |
|
1.4.5 Equal-Speed Algorithms and Analysis |
|
|
22 | (1) |
|
1.4.5.1 Schedule length minimization |
|
|
22 | (1) |
|
1.4.5.2 Energy consumption minimization |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (3) |
|
1.5 Post-Power-Determination Algorithms |
|
|
28 | (5) |
|
|
28 | (1) |
|
1.5.2 Analysis of List Scheduling Algorithms |
|
|
29 | (1) |
|
1.5.2.1 Analysis of algorithm LS |
|
|
29 | (1) |
|
1.5.2.2 Analysis of algorithm LRF |
|
|
30 | (1) |
|
1.5.3 Application to Schedule Length Minimization |
|
|
30 | (1) |
|
1.5.4 Application to Energy Consumption Minimization |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
1.6 Summary and Further Research |
|
|
33 | (6) |
|
|
34 | (5) |
|
2 Power-Aware High Performance Computing |
|
|
39 | (42) |
|
|
|
|
39 | (2) |
|
|
41 | (4) |
|
2.2.1 Current Hardware Technology and Power Consumption |
|
|
41 | (1) |
|
|
41 | (1) |
|
2.2.1.2 Memory subsystem power |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (3) |
|
|
45 | (1) |
|
2.3.1.1 Simulator-based power estimation |
|
|
45 | (1) |
|
2.3.1.2 Direct measurements |
|
|
46 | (1) |
|
2.3.1.3 Event-based estimation |
|
|
46 | (1) |
|
2.3.2 Performance Scalability on Power-Aware Systems |
|
|
46 | (1) |
|
2.3.3 Adaptive Power Allocation for Energy-Efficient Computing |
|
|
47 | (1) |
|
2.4 PowerPack: Fine-Grain Energy Profiling of HPC Applications |
|
|
48 | (11) |
|
2.4.1 Design and Implementation of PowerPack |
|
|
48 | (1) |
|
|
48 | (2) |
|
2.4.1.2 Fine-grain systematic power measurement |
|
|
50 | (1) |
|
2.4.1.3 Automatic power profiling and code synchronization |
|
|
51 | (2) |
|
2.4.2 Power Profiles of HPC Applications and Systems |
|
|
53 | (1) |
|
2.4.2.1 Power distribution over components |
|
|
53 | (1) |
|
2.4.2.2 Power dynamics of applications |
|
|
54 | (1) |
|
2.4.2.3 Power bounds on HPC systems |
|
|
55 | (2) |
|
2.4.2.4 Power versus dynamic voltage and frequency scaling |
|
|
57 | (2) |
|
2.5 Power-Aware Speedup Model |
|
|
59 | (10) |
|
2.5.1 Power-Aware Speedup |
|
|
59 | (1) |
|
2.5.1.1 Sequential execution time for a single workload T1 (w, f) |
|
|
60 | (1) |
|
2.5.1.2 Sequential execution time for an ON-chip/OFF-chip workload |
|
|
60 | (1) |
|
2.5.1.3 Parallel execution time on N processors for an ON-/OFF-chip workload with DOP = i |
|
|
61 | (1) |
|
2.5.1.4 Power-aware speedup for DOP and ON-/OFF-chip workloads |
|
|
62 | (1) |
|
2.5.2 Model Parametrization and Validation |
|
|
63 | (1) |
|
2.5.2.1 Coarse-grain parametrization and validation |
|
|
64 | (2) |
|
2.5.2.2 Fine-grain parametrization and validation |
|
|
66 | (3) |
|
|
69 | (4) |
|
2.6.1 Identification of Optimal System Configurations |
|
|
70 | (1) |
|
2.6.2 PAS-Directed Energy-Driven Runtime Frequency Scaling |
|
|
71 | (2) |
|
|
73 | (8) |
|
|
75 | (6) |
|
3 Energy Efficiency In HPC Systems |
|
|
81 | (28) |
|
|
|
|
81 | (2) |
|
3.2 Background and Related Work |
|
|
83 | (5) |
|
3.2.1 CPU Power Management |
|
|
83 | (1) |
|
3.2.1.1 OS-level CPU power management |
|
|
83 | (1) |
|
3.2.1.2 Workload-level CPU power management |
|
|
84 | (1) |
|
3.2.1.3 Cluster-level CPU power management |
|
|
84 | (1) |
|
3.2.2 Component-Based Power Management |
|
|
85 | (1) |
|
|
85 | (1) |
|
3.2.2.2 Storage subsystem |
|
|
86 | (1) |
|
3.2.3 Thermal-Conscious Power Management |
|
|
87 | (1) |
|
3.2.4 Power Management in Virtualized Datacenters |
|
|
87 | (1) |
|
3.3 Proactive, Component-Based Power Management |
|
|
88 | (3) |
|
3.3.1 Job Allocation Policies |
|
|
88 | (2) |
|
|
90 | (1) |
|
3.4 Quantifying Energy Saving Possibilities |
|
|
91 | (4) |
|
|
92 | (1) |
|
3.4.2 Component-Level Power Requirements |
|
|
92 | (2) |
|
|
94 | (1) |
|
3.5 Evaluation of the Proposed Strategies |
|
|
95 | (2) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (5) |
|
|
102 | (1) |
|
|
103 | (6) |
|
|
104 | (5) |
|
4 A Stochastic Framework For Hierarchical System-Level Power Management |
|
|
109 | (24) |
|
|
|
|
109 | (2) |
|
|
111 | (2) |
|
4.3 A Hierarchical DPM Architecture |
|
|
113 | (1) |
|
|
114 | (8) |
|
4.4.1 Model of the Application Pool |
|
|
114 | (4) |
|
4.4.2 Model of the Service Flow Control |
|
|
118 | (1) |
|
4.4.3 Model of the Simulated Service Provider |
|
|
119 | (1) |
|
4.4.4 Modeling Dependencies between SPs |
|
|
120 | (2) |
|
|
122 | (3) |
|
4.5.1 Mathematical Formulation |
|
|
122 | (1) |
|
4.5.2 Optimal Time-Out Policy for Local Power Manager |
|
|
123 | (2) |
|
|
125 | (5) |
|
|
130 | (3) |
|
|
130 | (3) |
|
5 Energy-Efficient Reservation Infrastructure For Grids, Clouds, And Networks |
|
|
133 | (30) |
|
|
|
|
133 | (1) |
|
|
134 | (4) |
|
5.2.1 Server and Data Center Power Management |
|
|
135 | (1) |
|
|
135 | (1) |
|
5.2.3 Virtualization to Improve Energy Efficiency |
|
|
136 | (1) |
|
5.2.4 Energy Awareness in Wired Networking Equipment |
|
|
136 | (1) |
|
|
137 | (1) |
|
5.3 ERIDIS: Energy-Efficient Reservation Infrastructure for Large-Scale Distributed Systems |
|
|
138 | (9) |
|
5.3.1 ERIDIS Architecture |
|
|
138 | (3) |
|
5.3.2 Management of the Resource Reservations |
|
|
141 | (4) |
|
5.3.3 Resource Management and On/Off Algorithms |
|
|
145 | (1) |
|
5.3.4 Energy-Consumption Estimates |
|
|
146 | (1) |
|
5.3.5 Prediction Algorithms |
|
|
146 | (1) |
|
5.4 EARI: Energy-Aware Reservation Infrastructure for Data Centers and Grids |
|
|
147 | (2) |
|
5.4.1 EARI's Architecture |
|
|
147 | (1) |
|
5.4.2 Validation of EARI on Experimental Grid Traces |
|
|
147 | (2) |
|
5.5 GOC: Green Open Cloud |
|
|
149 | (3) |
|
5.5.1 GOC's Resource Manager Architecture |
|
|
150 | (2) |
|
5.5.2 Validation of the GOC Framework |
|
|
152 | (1) |
|
5.6 HERMES: High Level Energy-Aware Model for Bandwidth Reservation in End-To-End Networks |
|
|
152 | (6) |
|
5.6.1 HERMES' Architecture |
|
|
154 | (1) |
|
5.6.2 The Reservation Process of HERMES |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (5) |
|
|
158 | (5) |
|
6 Energy-Efficient Job Placement On Clusters, Grids, And Clouds |
|
|
163 | (26) |
|
|
|
|
|
6.1 Problem and Motivation |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
164 | (1) |
|
6.2 Energy-Aware Infrastructures |
|
|
164 | (3) |
|
|
165 | (1) |
|
6.2.2 Context-Aware Buildings |
|
|
165 | (1) |
|
|
166 | (1) |
|
6.3 Current Resource Management Practices |
|
|
167 | (3) |
|
6.3.1 Widely Used Resource Management Systems |
|
|
167 | (2) |
|
6.3.2 Job Requirement Description |
|
|
169 | (1) |
|
6.4 Scientific and Technical Challenges |
|
|
170 | (2) |
|
6.4.1 Theoretical Difficulties |
|
|
170 | (1) |
|
6.4.2 Technical Difficulties |
|
|
170 | (1) |
|
6.4.3 Controlling and Tuning Jobs |
|
|
171 | (1) |
|
6.5 Energy-Aware Job Placement Algorithms |
|
|
172 | (8) |
|
|
172 | (2) |
|
6.5.2 Detailing One Approach |
|
|
174 | (6) |
|
|
180 | (3) |
|
6.6.1 Open Issues and Opportunities |
|
|
180 | (2) |
|
6.6.2 Obstacles for Adoption in Production |
|
|
182 | (1) |
|
|
183 | (6) |
|
|
184 | (5) |
|
7 Comparison And Analysis Of Greedy Energy-Efficient Scheduling Algorithms For Computational Grids |
|
|
189 | (26) |
|
|
|
|
|
|
|
|
|
|
|
189 | (2) |
|
|
191 | (2) |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (1) |
|
7.2.2 Formulating the Energy-Makespan Minimization Problem |
|
|
192 | (1) |
|
|
193 | (10) |
|
|
194 | (2) |
|
7.3.1.1 Greedy heuristic scheduling algorithm |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (3) |
|
|
202 | (1) |
|
|
202 | (1) |
|
7.4 Simulations, Results, and Discussion |
|
|
203 | (8) |
|
|
203 | (1) |
|
7.4.2 Comparative Results |
|
|
204 | (1) |
|
7.4.2.1 Small-size problems |
|
|
204 | (2) |
|
7.4.2.2 Large-size problems |
|
|
206 | (5) |
|
|
211 | (1) |
|
|
211 | (4) |
|
|
212 | (3) |
|
8 Toward Energy-Aware Scheduling Using Machine Learning |
|
|
215 | (30) |
|
|
|
|
|
|
|
|
|
|
215 | (3) |
|
8.1.1 Energetic Impact of the Cloud |
|
|
216 | (1) |
|
8.1.2 An Intelligent Way to Manage Data Centers |
|
|
216 | (1) |
|
8.1.3 Current Autonomic Computing Techniques |
|
|
217 | (1) |
|
8.1.4 Power-Aware Autonomic Computing |
|
|
217 | (1) |
|
8.1.5 State of the Art and Case Study |
|
|
218 | (1) |
|
8.2 Intelligent Self-Management |
|
|
218 | (7) |
|
8.2.1 Classical AI Approaches |
|
|
219 | (1) |
|
8.2.1.1 Heuristic algorithms |
|
|
219 | (1) |
|
|
219 | (1) |
|
8.2.1.3 Semantic techniques |
|
|
219 | (1) |
|
8.2.1.4 Expert systems and genetic algorithms |
|
|
220 | (1) |
|
8.2.2 Machine Learning Approaches |
|
|
220 | (1) |
|
8.2.2.1 Instance-based learning |
|
|
221 | (1) |
|
8.2.2.2 Reinforcement learning |
|
|
222 | (3) |
|
8.2.2.3 Feature and example selection |
|
|
225 | (1) |
|
8.3 Introducing Power-Aware Approaches |
|
|
225 | (5) |
|
8.3.1 Use of Virtualization |
|
|
226 | (2) |
|
8.3.2 Turning On and Off Machines |
|
|
228 | (1) |
|
8.3.3 Dynamic Voltage and Frequency Scaling |
|
|
229 | (1) |
|
8.3.4 Hybrid Nodes and Data Centers |
|
|
230 | (1) |
|
8.4 Experiences of Applying ML on Power-Aware Self-Management |
|
|
230 | (8) |
|
8.4.1 Case Study Approach |
|
|
231 | (1) |
|
8.4.2 Scheduling and Power Trade-Off |
|
|
231 | (2) |
|
8.4.3 Experimenting with Power-Aware Techniques |
|
|
233 | (3) |
|
8.4.4 Applying Machine Learning |
|
|
236 | (2) |
|
8.4.5 Conclusions from the Experiments |
|
|
238 | (1) |
|
8.5 Conclusions on Intelligent Power-Aware Self-Management |
|
|
238 | (7) |
|
|
240 | (5) |
|
9 Energy Efficiency Metrics For Data Centers |
|
|
245 | (26) |
|
|
|
|
245 | (5) |
|
|
245 | (1) |
|
9.1.2 Data Center Energy Use |
|
|
246 | (1) |
|
9.1.3 Data Center Characteristics |
|
|
246 | (1) |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
250 | (1) |
|
9.2 Fundamentals of Metrics |
|
|
250 | (2) |
|
9.2.1 Demand and Constraints on Data Center Operators |
|
|
250 | (1) |
|
|
251 | (1) |
|
9.2.2.1 Criteria for good metrics |
|
|
251 | (1) |
|
|
252 | (1) |
|
9.2.2.3 Stability of metrics |
|
|
252 | (1) |
|
9.3 Data Center Energy Efficiency |
|
|
252 | (8) |
|
9.3.1 Holistic IT Efficiency Metrics |
|
|
252 | (2) |
|
9.3.1.1 Fixed versus proportional overheads |
|
|
254 | (1) |
|
9.3.1.2 Power versus energy |
|
|
254 | (1) |
|
9.3.1.3 Performance versus productivity |
|
|
255 | (1) |
|
|
256 | (1) |
|
9.3.2.1 Environmental statement |
|
|
256 | (1) |
|
9.3.2.2 Problem statement |
|
|
256 | (1) |
|
|
257 | (1) |
|
9.3.2.4 Aims and objectives of CoC |
|
|
258 | (1) |
|
9.3.3 Power Use in Data Centers |
|
|
259 | (1) |
|
9.3.3.1 Data center IT power to utility power relationship |
|
|
259 | (1) |
|
9.3.3.2 Chiller efficiency and external temperature |
|
|
260 | (1) |
|
|
260 | (7) |
|
|
261 | (1) |
|
9.4.1.1 Power usage effectiveness (PUE) |
|
|
261 | (1) |
|
9.4.1.2 Data center efficiency (DCE) |
|
|
262 | (1) |
|
9.4.1.3 Data center infrastructure efficiency (DCiE) |
|
|
262 | (1) |
|
9.4.1.4 Data center productivity (DCP) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
9.4.3.1 Site infrastructure power overhead multiplier (SI-POM) |
|
|
265 | (1) |
|
9.4.3.2 IT hardware power overhead multiplier (H-POM) |
|
|
266 | (1) |
|
9.4.3.3 DC hardware compute load per unit of computing work done |
|
|
266 | (1) |
|
9.4.3.4 Deployed hardware utilization ratio (DH-UR) |
|
|
266 | (1) |
|
9.4.3.5 Deployed hardware utilization efficiency (DH-UE) |
|
|
267 | (1) |
|
9.5 Harmonizing Global Metrics for Data Center Energy Efficiency |
|
|
267 | (4) |
|
|
268 | (3) |
|
10 Autonomic Green Computing In Large-Scale Data Centers |
|
|
271 | (30) |
|
|
|
|
|
|
271 | (1) |
|
10.2 Related Technologies and Techniques |
|
|
272 | (11) |
|
10.2.1 Power Optimization Techniques in Data Centers |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
274 | (1) |
|
10.2.4 Data Center Power Distribution |
|
|
275 | (1) |
|
10.2.5 Data Center Power-Efficient Metrics |
|
|
276 | (1) |
|
10.2.6 Modeling Prototype and Testbed |
|
|
277 | (1) |
|
|
278 | (2) |
|
10.2.8 Energy Proportional Computing |
|
|
280 | (1) |
|
10.2.9 Hardware Virtualization Technology |
|
|
281 | (1) |
|
10.2.10 Autonomic Computing |
|
|
282 | (1) |
|
10.3 Autonomic Green Computing: A Case Study |
|
|
283 | (14) |
|
10.3.1 Autonomic Management Platform |
|
|
285 | (1) |
|
10.3.1.1 Platform architecture |
|
|
285 | (1) |
|
10.3.1.2 DEVS-based modeling and simulation platform |
|
|
285 | (2) |
|
10.3.1.3 Workload generator |
|
|
287 | (1) |
|
10.3.2 Model Parameter Evaluation |
|
|
288 | (1) |
|
10.3.2.1 State transitioning overhead |
|
|
288 | (1) |
|
10.3.2.2 VM template evaluation |
|
|
289 | (2) |
|
10.3.2.3 Scalability analysis |
|
|
291 | (1) |
|
10.3.3 Autonomic Power Efficiency Management Algorithm (Performance Per Watt) |
|
|
291 | (2) |
|
10.3.4 Simulation Results and Evaluation |
|
|
293 | (3) |
|
10.3.4.1 Analysis of energy and performance trade-offs |
|
|
296 | (1) |
|
10.4 Conclusion and Future Directions |
|
|
297 | (4) |
|
|
298 | (3) |
|
11 Energy And Thermal Aware Scheduling In Data Centers |
|
|
301 | (38) |
|
|
|
|
|
301 | (1) |
|
|
302 | (3) |
|
11.3 Intermachine Scheduling |
|
|
305 | (10) |
|
11.3.1 Performance and Power Profile of VMs |
|
|
305 | (4) |
|
|
309 | (1) |
|
|
309 | (1) |
|
|
310 | (2) |
|
|
312 | (1) |
|
|
312 | (3) |
|
11.4 Intramachine Scheduling |
|
|
315 | (6) |
|
11.4.1 Air-Forced Thermal Modeling and Cost |
|
|
316 | (1) |
|
11.4.2 Cooling Aware Dynamic Workload Scheduling |
|
|
317 | (1) |
|
11.4.3 Scheduling Mechanism |
|
|
318 | (1) |
|
11.4.4 Cooling Costs Predictor |
|
|
319 | (2) |
|
|
321 | (12) |
|
11.5.1 Intermachine Scheduler (vGreen) |
|
|
321 | (2) |
|
11.5.2 Heterogeneous Workloads |
|
|
323 | (2) |
|
11.5.2.1 Comparison with DVFS policies |
|
|
325 | (3) |
|
11.5.2.2 Homogeneous workloads |
|
|
328 | (1) |
|
11.5.3 Intramachine Scheduler (Cool and Save) |
|
|
328 | (3) |
|
|
331 | (2) |
|
|
333 | (1) |
|
|
333 | (6) |
|
|
334 | (5) |
|
12 QOS-Aware Power Management In Data Centers |
|
|
339 | (22) |
|
|
|
|
339 | (1) |
|
12.2 Problem Classification |
|
|
340 | (4) |
|
12.2.1 Objective and Constraint |
|
|
340 | (1) |
|
12.2.2 Scope and Time Granularities |
|
|
340 | (1) |
|
|
341 | (1) |
|
12.2.4 Power Management Mechanism |
|
|
342 | (2) |
|
|
344 | (7) |
|
12.3.1 Energy-Efficiency Metrics |
|
|
344 | (2) |
|
12.3.2 Improving Energy Efficiency |
|
|
346 | (1) |
|
12.3.2.1 Energy minimization with performance guarantee |
|
|
346 | (2) |
|
12.3.2.2 Performance maximization under power budget |
|
|
348 | (1) |
|
12.3.2.3 Trade-off between power and performance |
|
|
348 | (2) |
|
12.3.3 Energy-Proportional Computing |
|
|
350 | (1) |
|
|
351 | (2) |
|
|
353 | (8) |
|
|
356 | (5) |
|
13 Energy-Efficient Storage Systems For Data Centers |
|
|
361 | (16) |
|
|
|
|
361 | (1) |
|
13.2 Disk Drive Operation and Disk Power |
|
|
362 | (4) |
|
13.2.1 An Overview of Disk Drives |
|
|
362 | (1) |
|
13.2.2 Sources of Disk Power Consumption |
|
|
363 | (2) |
|
13.2.3 Disk Activity and Power Consumption |
|
|
365 | (1) |
|
13.3 Disk and Storage Power Reduction Techniques |
|
|
366 | (5) |
|
13.3.1 Exploiting the STANDBY State |
|
|
368 | (1) |
|
13.3.2 Reducing Seek Activity |
|
|
369 | (1) |
|
13.3.3 Achieving Energy Proportionality |
|
|
369 | (1) |
|
13.3.3.1 Hardware approaches |
|
|
369 | (1) |
|
13.3.3.2 Software approaches |
|
|
370 | (1) |
|
13.4 Using Nonvolatile Memory and Solid-State Disks |
|
|
371 | (1) |
|
|
372 | (5) |
|
|
373 | (4) |
|
14 Autonomic Energy/Performance Optimizations For Memory In Servers |
|
|
377 | (18) |
|
|
|
|
378 | (2) |
|
14.2 Classifications of Dynamic Power Management Techniques |
|
|
380 | (2) |
|
14.2.1 Heuristic and Predictive Techniques |
|
|
380 | (1) |
|
14.2.2 QoS and Energy Trade-Offs |
|
|
381 | (1) |
|
14.3 Applications of Dynamic Power Management (DPM) |
|
|
382 | (2) |
|
14.3.1 Power Management of System Components in Isolation |
|
|
382 | (1) |
|
14.3.2 Joint Power Management of System Components |
|
|
383 | (1) |
|
14.3.3 Holistic System-Level Power Management |
|
|
383 | (1) |
|
14.4 Autonomic Power and Performance Optimization of Memory Subsystems in Server Platforms |
|
|
384 | (7) |
|
14.4.1 Adaptive Memory Interleaving Technique for Power and Performance Management |
|
|
384 | (2) |
|
14.4.1.1 Formulating the optimization problem |
|
|
386 | (3) |
|
|
389 | (1) |
|
14.4.2 Industry Techniques |
|
|
389 | (1) |
|
14.4.2.1 Enhancements in memory hardware design |
|
|
390 | (1) |
|
14.4.2.2 Adding more operating states |
|
|
390 | (1) |
|
14.4.2.3 Faster transition to and from low power states |
|
|
390 | (1) |
|
14.4.2.4 Memory consolidation |
|
|
390 | (1) |
|
|
391 | (4) |
|
|
391 | (4) |
|
15 ROD: A Practical Approach To Improving Reliability Of Energy-Efficient Parallel Disk Systems |
|
|
395 | (22) |
|
|
|
|
|
|
395 | (1) |
|
15.2 Modeling Reliability of Energy-Efficient Parallel Disks |
|
|
396 | (5) |
|
|
396 | (2) |
|
15.2.1.1 Disk utilization |
|
|
398 | (1) |
|
|
398 | (1) |
|
15.2.1.3 Power-state transition frequency |
|
|
399 | (1) |
|
15.2.1.4 Single disk reliability model |
|
|
399 | (1) |
|
15.2.2 MAID, Massive Arrays of Idle Disks |
|
|
400 | (1) |
|
15.3 Improving Reliability of MAID via Disk Swapping |
|
|
401 | (4) |
|
15.3.1 Improving Reliability of Cache Disks in MAID |
|
|
401 | (3) |
|
15.3.2 Swapping Disks Multiple Times |
|
|
404 | (1) |
|
15.4 Experimental Results and Evaluation |
|
|
405 | (6) |
|
15.4.1 Experimental Setup |
|
|
405 | (1) |
|
|
406 | (1) |
|
15.4.3 The Single Disk Swapping Strategy |
|
|
406 | (3) |
|
15.4.4 The Multiple Disk Swapping Strategy |
|
|
409 | (2) |
|
|
411 | (1) |
|
|
412 | (5) |
|
|
413 | (4) |
|
16 Embracing The Memory And I/O Walls For Energy-Efficient Scientific Computing |
|
|
417 | (26) |
|
|
|
|
417 | (3) |
|
16.2 Background and Related Work |
|
|
420 | (3) |
|
16.2.1 DVFS-Enabled Processors |
|
|
420 | (1) |
|
16.2.2 DVFS Scheduling Algorithms |
|
|
421 | (1) |
|
16.2.3 Memory-Aware, Interval-Based Algorithms |
|
|
422 | (1) |
|
16.3 β-Adaptation: A New DVFS Algorithm |
|
|
423 | (6) |
|
16.3.1 The Compute-Boundedness Metric, β |
|
|
423 | (1) |
|
16.3.2 The Frequency Calculating Formula, f* |
|
|
424 | (1) |
|
16.3.3 The Online β Estimation |
|
|
425 | (2) |
|
16.3.4 Putting It All Together |
|
|
427 | (2) |
|
16.4 Algorithm Effectiveness |
|
|
429 | (9) |
|
16.4.1 A Comparison to Other DVFS Algorithms |
|
|
429 | (3) |
|
16.4.2 Frequency Emulation |
|
|
432 | (4) |
|
16.4.3 The Minimum Dependence to the PMU |
|
|
436 | (2) |
|
16.5 Conclusions and Future Work |
|
|
438 | (5) |
|
|
439 | (4) |
|
17 Multiple Frequency Selection In Dvfs-Enabled Processors To Minimize Energy Consumption |
|
|
443 | (22) |
|
|
|
|
|
|
|
443 | (1) |
|
17.2 Energy Efficiency in HPC Systems |
|
|
444 | (2) |
|
17.3 Exploitation of Dynamic Voltage-Frequency Scaling |
|
|
446 | (2) |
|
17.3.1 Independent Slack Reclamation |
|
|
446 | (1) |
|
17.3.2 Integrated Schedule Generation |
|
|
447 | (1) |
|
|
448 | (2) |
|
17.4.1 System and Application Models |
|
|
448 | (1) |
|
|
448 | (2) |
|
17.5 Energy-Aware Scheduling via DVFS |
|
|
450 | (6) |
|
17.5.1 Optimum Continuous Frequency |
|
|
450 | (1) |
|
17.5.2 Reference Dynamic Voltage-Frequency Scaling (RDVFS) |
|
|
451 | (1) |
|
17.5.3 Maximum-Minimum-Frequency for Dynamic Voltage-Frequency Scaling (MMF-DVFS) |
|
|
452 | (1) |
|
17.5.4 Multiple Frequency Selection for Dynamic Voltage-Frequency Scaling (MFS-DVFS) |
|
|
453 | (1) |
|
17.5.4.1 Task eligibility |
|
|
454 | (2) |
|
17.6 Experimental Results |
|
|
456 | (5) |
|
17.6.1 Simulation Settings |
|
|
456 | (2) |
|
|
458 | (3) |
|
|
461 | (4) |
|
|
461 | (4) |
|
18 The Paramountcy Of Reconfigurable Computing |
|
|
465 | (84) |
|
|
|
465 | (1) |
|
18.2 Why Computers are Important |
|
|
466 | (6) |
|
18.2.1 Computing for a Sustainable Environment |
|
|
470 | (2) |
|
18.3 Performance Progress Stalled |
|
|
472 | (16) |
|
18.3.1 Unaffordable Energy Consumption of Computing |
|
|
473 | (2) |
|
18.3.2 Crashing into the Programming Wall |
|
|
475 | (13) |
|
18.4 The Tail is Wagging the Dog (Accelerators) |
|
|
488 | (6) |
|
18.4.1 Hardwired Accelerators |
|
|
489 | (1) |
|
18.4.2 Programmable Accelerators |
|
|
490 | (4) |
|
18.5 Reconfigurable Computing |
|
|
494 | (32) |
|
18.5.1 Speedup Factors by FPGAs |
|
|
498 | (3) |
|
18.5.2 The Reconfigurable Computing Paradox |
|
|
501 | (4) |
|
18.5.3 Saving Energy by Reconfigurable Computing |
|
|
505 | (1) |
|
18.5.3.1 Traditional green computing |
|
|
506 | (1) |
|
18.5.3.2 The role of graphics processors |
|
|
507 | (1) |
|
18.5.3.3 Wintel versus ARM |
|
|
508 | (3) |
|
18.5.4 Reconfigurable Computing is the Silver Bullet |
|
|
511 | (1) |
|
18.5.4.1 A new world model of computing |
|
|
511 | (3) |
|
18.5.5 The Twin-Paradigm Approach to Tear Down the Wall |
|
|
514 | (3) |
|
18.5.6 A Mass Movement Needed as Soon as Possible |
|
|
517 | (1) |
|
18.5.6.1 Legacy software from the mainframe age |
|
|
518 | (1) |
|
18.5.7 How to Reinvent Computing |
|
|
519 | (7) |
|
|
526 | (23) |
|
|
529 | (20) |
|
19 Workload Clustering For Increasing Energy Savings On Embedded Mpsocs |
|
|
549 | (18) |
|
|
|
Sri Hari Krishna Narayanan |
|
|
|
549 | (1) |
|
19.2 Embedded MPSoC Architecture, Execution Model, and Related Work |
|
|
550 | (1) |
|
|
551 | (9) |
|
|
551 | (2) |
|
19.3.2 Technical Details and Problem Formulation |
|
|
553 | (1) |
|
19.3.2.1 System and job model |
|
|
553 | (1) |
|
19.3.2.2 Mathematical programing model |
|
|
554 | (3) |
|
|
557 | (3) |
|
19.4 Experimental Evaluation |
|
|
560 | (4) |
|
|
564 | (3) |
|
|
565 | (2) |
|
20 Energy-Efficient Internet Infrastructure |
|
|
567 | (26) |
|
|
|
|
567 | (4) |
|
20.1.1 Performance Challenges |
|
|
568 | (2) |
|
20.1.2 Existing Packet Forwarding Approaches |
|
|
570 | (1) |
|
20.1.2.1 Software approaches |
|
|
570 | (1) |
|
20.1.2.2 Hardware approaches |
|
|
571 | (1) |
|
20.2 SRAM-Based Pipelined IP Lookup Architectures: Alternative to TCAMs |
|
|
571 | (2) |
|
20.3 Data Structure Optimization for Power Efficiency |
|
|
573 | (7) |
|
20.3.1 Problem Formulation |
|
|
574 | (1) |
|
20.3.1.1 Non-pipelined and pipelined engines |
|
|
574 | (1) |
|
20.3.1.2 Power function of SRAM |
|
|
575 | (1) |
|
20.3.2 Special Case: Uniform Stride |
|
|
576 | (1) |
|
20.3.3 Dynamic Programming |
|
|
576 | (1) |
|
20.3.4 Performance Evaluation |
|
|
577 | (1) |
|
20.3.4.1 Results for non-pipelined architecture |
|
|
578 | (1) |
|
20.3.4.2 Results for pipelined architecture |
|
|
578 | (2) |
|
20.4 Architectural Optimization to Reduce Dynamic Power Dissipation |
|
|
580 | (8) |
|
20.4.1 Analysis and Motivation |
|
|
581 | (1) |
|
20.4.1.1 Traffic locality |
|
|
582 | (1) |
|
20.4.1.2 Traffic rate variation |
|
|
582 | (1) |
|
20.4.1.3 Access frequency on different stages |
|
|
583 | (1) |
|
20.4.2 Architecture-Specific Techniques |
|
|
583 | (1) |
|
20.4.2.1 Inherent caching |
|
|
584 | (1) |
|
|
584 | (1) |
|
20.4.2.3 Fine-grained memory enabling |
|
|
585 | (1) |
|
20.4.3 Performance Evaluation |
|
|
585 | (3) |
|
|
588 | (1) |
|
|
589 | (4) |
|
|
589 | (4) |
|
21 Demand Response In The Smart Grid: A Distributed Computing Perspective |
|
|
593 | (22) |
|
|
|
|
593 | (2) |
|
|
595 | (5) |
|
21.2.1 Existing Demand Response Programs |
|
|
595 | (2) |
|
21.2.2 Demand Response Supported by the Smart Grid |
|
|
597 | (3) |
|
21.3 Demand Response as a Distributed System |
|
|
600 | (11) |
|
21.3.1 An Overlay Network for Demand Response |
|
|
600 | (2) |
|
21.3.2 Event Driven Demand Response |
|
|
602 | (2) |
|
21.3.3 Cost Driven Demand Response |
|
|
604 | (5) |
|
21.3.4 A Decentralized Demand Response Framework |
|
|
609 | (1) |
|
21.3.5 Accountability of Coordination Decision Making |
|
|
610 | (1) |
|
|
611 | (4) |
|
|
611 | (4) |
|
22 Resource Management For Distributed Mobile Computing |
|
|
615 | (38) |
|
|
|
615 | (2) |
|
22.2 Single-Hop Energy-Constrained Environment |
|
|
617 | (18) |
|
|
617 | (3) |
|
|
620 | (1) |
|
22.2.3 Heuristic Descriptions |
|
|
621 | (1) |
|
|
621 | (1) |
|
22.2.3.2 Scheduling communications |
|
|
621 | (1) |
|
22.2.3.3 Opportunistic load balancing and minimum energy greedy heuristics |
|
|
622 | (1) |
|
|
622 | (2) |
|
|
624 | (1) |
|
|
625 | (1) |
|
22.2.3.7 Originator and random |
|
|
626 | (1) |
|
|
626 | (2) |
|
|
628 | (2) |
|
|
630 | (4) |
|
|
634 | (1) |
|
22.3 Multihop Distributed Mobile Computing Environment |
|
|
635 | (12) |
|
22.3.1 The Multihop System Model |
|
|
635 | (1) |
|
22.3.2 Energy-Aware Routing Protocol |
|
|
636 | (1) |
|
|
636 | (1) |
|
|
637 | (1) |
|
22.3.2.3 DSDV remaining energy |
|
|
637 | (1) |
|
22.3.2.4 DSDV-energy consumption per remaining energy |
|
|
637 | (1) |
|
22.3.3 Heuristic Description |
|
|
638 | (1) |
|
|
638 | (1) |
|
22.3.3.2 Estimated minimum total energy (EMTE) |
|
|
638 | (1) |
|
22.3.3.3 K-percent-speed (KPS) and K-percent-energy (KPE) |
|
|
639 | (1) |
|
22.3.3.4 Energy ratio and distance (ERD) |
|
|
639 | (1) |
|
22.3.3.5 ETC and distance (ETCD) |
|
|
640 | (1) |
|
22.3.3.6 Minimum execution time (MET) |
|
|
640 | (1) |
|
22.3.3.7 Minimum completion time (MCT) and minimum completion time with DVS (MCT-DVS) |
|
|
640 | (1) |
|
22.3.3.8 Switching algorithm (SA) |
|
|
640 | (1) |
|
|
641 | (2) |
|
|
643 | (1) |
|
22.3.5.1 Distributed resource management |
|
|
643 | (1) |
|
22.3.5.2 Energy-aware protocol |
|
|
644 | (1) |
|
|
644 | (3) |
|
|
647 | (6) |
|
|
647 | (6) |
|
23 An Energy-Aware Framework For Mobile Data Mining |
|
|
653 | (20) |
|
|
|
|
|
653 | (1) |
|
|
654 | (3) |
|
23.3 Mobile Device Components |
|
|
657 | (2) |
|
|
659 | (5) |
|
|
664 | (6) |
|
23.5.1 Clustering the M2M Architecture |
|
|
666 | (4) |
|
|
670 | (3) |
|
|
670 | (3) |
|
24 Energy Awareness And Efficiency In Wireless Sensor Networks: From Physical Devices To The Communication Link |
|
|
673 | (36) |
|
|
|
|
673 | (3) |
|
24.2 WSN and Power Dissipation Models |
|
|
676 | (7) |
|
24.2.1 Network and Node Architecture |
|
|
676 | (3) |
|
24.2.2 Sources of Power Dissipation in WSNs |
|
|
679 | (4) |
|
24.3 Strategies for Energy Optimization |
|
|
683 | (18) |
|
|
684 | (1) |
|
|
685 | (6) |
|
24.3.1.2 Adaptive sensing |
|
|
691 | (2) |
|
24.3.1.3 Dynamic voltage scale (DVS) |
|
|
693 | (1) |
|
24.3.1.4 OS task scheduling |
|
|
694 | (1) |
|
|
695 | (1) |
|
24.3.2.1 Transmission power control |
|
|
695 | (1) |
|
24.3.2.2 Dynamic modulation scaling |
|
|
696 | (2) |
|
24.3.2.3 Link layer optimizations |
|
|
698 | (3) |
|
|
701 | (8) |
|
|
702 | (7) |
|
25 Network-Wide Strategies For Energy Efficiency In Wireless Sensor Networks |
|
|
709 | (42) |
|
|
|
|
709 | (2) |
|
|
711 | (8) |
|
25.2.1 Topology Control Protocols |
|
|
712 | (2) |
|
25.2.2 Energy-Efficient MAC Protocols |
|
|
714 | (2) |
|
25.2.2.1 Scheduled MAC protocols in WSNs |
|
|
716 | (1) |
|
25.2.2.2 Contention-based MAC protocols |
|
|
717 | (2) |
|
|
719 | (6) |
|
25.3.1 Flat and Hierarchical Protocols |
|
|
722 | (3) |
|
|
725 | (4) |
|
|
729 | (11) |
|
|
729 | (4) |
|
25.5.2 Data Aggregation and Data Fusion in WSNs |
|
|
733 | (2) |
|
25.5.2.1 Approaches of data fusion for energy efficiency |
|
|
735 | (1) |
|
25.5.2.2 Data aggregation strategies |
|
|
736 | (4) |
|
|
740 | (11) |
|
|
741 | (10) |
|
26 Energy Management In Heterogeneous Wireless Health Care Networks |
|
|
751 | (36) |
|
|
|
|
|
|
751 | (2) |
|
|
753 | (2) |
|
26.2.1 Health Monitoring Task Model |
|
|
753 | (2) |
|
26.3 Collaborative Distributed Environmental Sensing |
|
|
755 | (5) |
|
26.3.1 Node Neighborhood and Localization Rate |
|
|
757 | (1) |
|
26.3.2 Energy Ratio and Sensing Rate |
|
|
758 | (1) |
|
26.3.3 Duty Cycling and Prediction |
|
|
759 | (1) |
|
26.4 Task Assignment in a Body Area Network |
|
|
760 | (11) |
|
26.4.1 Optimal Task Assignment |
|
|
760 | (2) |
|
26.4.2 Dynamic Task Assignment |
|
|
762 | (1) |
|
26.4.2.1 DynAGreen algorithm |
|
|
763 | (5) |
|
26.4.2.2 DynAGreenLife algorithm |
|
|
768 | (3) |
|
|
771 | (13) |
|
26.5.1 Collaborative Sensing |
|
|
771 | (1) |
|
|
772 | (4) |
|
26.5.2 Dynamic Task Assignment |
|
|
776 | (1) |
|
26.5.2.1 Performance in static conditions |
|
|
777 | (3) |
|
26.5.2.2 Dynamic adaptability |
|
|
780 | (4) |
|
|
784 | (3) |
|
|
785 | (2) |
Index |
|
787 | |