Muutke küpsiste eelistusi

E-raamat: Energy Generation and Efficiency Technologies for Green Residential Buildings

Edited by (University of Windsor, Turbulence & Energy Laboratory, Canada), Edited by (University of Windsor, Turbulence & Energy Laboratory, Canada)
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 17-Jun-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785619489
  • Formaat - EPUB+DRM
  • Hind: 201,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 17-Jun-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785619489

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Residential buildings consume about a quarter of all energy (including electrical and thermal) in industrialized countries and emit around 20% of the carbon emissions there. Older and outdated heating and cooling technology causes high energy demand and, depending on building type, secondary causes can include ventilation and lighting. Technology is available to mitigate high energy consumption, and to enable the use of renewable or environmentally friendly energy, partly generated locally.

This book, written by international experts from academia as well as industry, compiles and describes several key technologies available to reduce a residential building's energy consumption. Key themes include local energy generation, such as the use of sunlight to reduce heating needs, and photovoltaics for electricity. Case studies are included in most chapters to provide real-world context for the technologies described.



This book, written by international experts from academia as well as industry, compiles and describes several key technologies available to reduce a residential building's energy consumption. Key themes include local energy generation, such as the use of sunlight to reduce heating needs, and photovoltaics for electricity.

About the editors xiii
1 Introduction and motivation
1(6)
Zahra Naghibi
Jacqueline A. Stagner
David S.-K. Ting
Rupp Carriveau
References
4(3)
2 Clean energy generation in residential green buildings
7(38)
Ekin Ozgirgin Yapici
Ece Ayli
2.1 Introduction to residential green buildings
7(2)
2.2 Certification systems for sustainability ratings of residential green buildings
9(7)
2.2.1 Building Research Establishment Environmental Assessment Method
10(1)
2.2.2 Leadership in Energy and Environmental Design (LEED) system
10(4)
2.2.3 ITACA system
14(1)
2.2.4 Comprehensive Assessment System for Built Environment Efficiency
15(1)
2.3 Case studies related to certification systems and their comparison
16(2)
2.4 Green buildings incentives
18(2)
2.4.1 External incentives
18(1)
2.4.2 Internal incentives
19(1)
2.4.3 Concluding remarks
20(1)
2.5 Energy demand modelling for residential green buildings
20(6)
2.5.1 Classification of modelling approaches
21(4)
2.5.2 Case study about building energy-consumption determination
25(1)
2.6 Clean energy generation in residential green buildings
26(10)
2.6.1 Evaluation of building towards clean energy generation
26(3)
2.6.2 Classification of clean energy generation systems
29(7)
2.7 Conclusion
36(9)
References
37(8)
3 Performance monitoring of a 60 kW photovoltaic array in Alberta
45(16)
Oksana Treacy
David Wood
3.1 Introduction
45(1)
3.2 Description of the PV system
46(1)
3.3 Weather monitoring
47(2)
3.4 Electricity production modeling
49(2)
3.5 Malfunctions and performance issues
51(3)
3.6 Effect of weather on performance
54(2)
3.7 Simulation of system performance with actual irradiance
56(1)
3.8 Conclusions
57(4)
References
58(3)
4 Environmental and economic evaluation of PV solar system for remote communities using building information modeling: A case study
61(14)
Muhammad Saleem
Rajeev Ruparathna
Rehan Sadiq
Kasun Hewage
4.1 Introduction
61(2)
4.2 Literature review
63(1)
4.3 Methodology and case study
63(2)
4.4 Results
65(2)
4.5 Discussion and conclusions
67(8)
Appendix A
69(4)
References
73(2)
5 Solar energy generation technology for small homes
75(40)
Santosh B. Bopche
Inderjeet Singh
5.1 Introduction
75(2)
5.1.1 Solar thermal power plant
75(2)
5.2 Power generation technology--An overview
77(17)
5.2.1 Classification of concentrating solar power collector systems
77(11)
5.2.2 Concentrating solar power (CSP) technology comparison
88(1)
5.2.3 Advantages of CSP technologies
89(1)
5.2.4 Classification of concentrating solar power receiver systems
89(5)
5.3 Thermal energy storage
94(3)
5.3.1 Types of energy storage
95(2)
5.4 Solar-powered heat engines
97(8)
5.4.1 Stirling engine
97(6)
5.4.2 Solar-Rankine cycle
103(1)
5.4.3 Solar-Brayton cycle
104(1)
5.5 Integration of solar to thermal power with the conventional generating unit
105(4)
5.5.1 Low renewable energy hybrid technologies
105(2)
5.5.2 Medium-renewable hybrids
107(1)
5.5.3 High renewable hybrid technologies
107(1)
5.5.4 Advantages of hybridization of solar power systems with other technologies
108(1)
5.6 Concluding remarks
109(3)
5.6.1 Ways to improve the efficiency of solar-based power plant/efficiency improvement
109(1)
5.6.2 Challenges/limitations of concentrating power technology in remote as well as desert regions
110(2)
5.7 Summary
112(3)
References
112(3)
6 Numerical analysis of phase change materials for use in energy-efficient buildings
115(34)
Swapnil S. Salvi
Himanshu Tyagi
6.1 Introduction
116(8)
6.1.1 Motivation
116(1)
6.1.2 Background
117(3)
6.1.3 Prior work
120(4)
6.2 Analysis of latent heat TES
124(11)
6.2.1 Case 1 (Cartesian coordinates--analytical vs. numerical)
125(2)
6.2.2 Case 2 (cylindrical coordinates--analytical vs. numerical--constant heat extraction freezing)
127(2)
6.2.3 Case 3 (cylindrical coordinates--approximate vs. numerical--constant temperature freezing)
129(1)
6.2.4 Case 4 (Cartesian and cylindrical coordinates-- ambient--change in slope)
130(3)
6.2.5 Case 5 (Cylindrical coordinates--2D--Gravity)
133(2)
6.3 Energy-efficient buildings: An application of latent heat TES
135(9)
6.3.1 Validation of COMSOL simulations for a simple brick wall
135(2)
6.3.2 Numerical model for thermal analysis of PCM in brick walls
137(2)
6.3.3 Numerical model for thermal analysis of PCM in brick walls (considering gravitational/buoyancy effects)
139(2)
6.3.4 Numerical model for thermal analysis of PCM in brick walls (with more realistic boundary conditions)
141(3)
6.4 Conclusion
144(1)
6.5 Future scope
145(4)
References
145(4)
7 Insulation materials
149(24)
Ozgur Bayer
7.1 Introduction to insulation materials in green buildings
149(1)
7.2 Evolution of insulation materials
150(3)
7.2.1 Historical development of insulation materials in green building concept
150(1)
7.2.2 Research and development efforts
151(2)
7.3 Categorization of insulation materials
153(6)
7.3.1 Natural insulation materials
153(2)
7.3.2 Synthetic insulation materials
155(2)
7.3.3 Novel insulation materials
157(2)
7.4 Characterization, application and selection methodology of insulation materials for green buildings
159(5)
7.4.1 Characterization of insulation materials: optimal insulation level concept
159(1)
7.4.2 Application of insulation materials
160(3)
7.4.3 Selection criteria for insulation material
163(1)
7.5 Insulation materials in green residential buildings
164(9)
7.5.1 Standards and certificates for insulation materials used in green buildings
165(2)
References
167(6)
8 Latent relationships between construction cost and energy efficiency in multifamily green buildings
173(18)
Andrew McCoy
Dong Zhao
Yunjeong Mo
Philip Agee
Freddy Paige
8.1 Introduction
173(1)
8.2 Literature review
174(2)
8.2.1 Green design and construction
174(1)
8.2.2 Residential certifications and rating systems
175(1)
8.2.3 Certifying residential buildings
175(1)
8.3 Sustainable development trends
176(1)
8.4 Construction costs, green premiums, and paybacks
176(2)
8.5 Methodology
178(5)
8.5.1 Variables
178(1)
8.5.2 Data
178(2)
8.5.3 Data analysis
180(1)
8.5.4 Findings
181(2)
8.6 Energy use and development costs
183(1)
8.7 Model 1: Cost information only
183(1)
8.7.1 Algorithm comparison
183(1)
8.7.2 Feature selection
184(1)
8.8 Model 2: Basic and cost information
184(1)
8.8.1 Algorithm comparison
184(1)
8.8.2 Feature selection
184(1)
8.9 Model 3: Basic, cost, and technical information
185(2)
8.9.1 Algorithm comparison
185(1)
8.9.2 Feature selection
185(2)
8.10 Conclusions
187(4)
References
188(3)
9 Secondary battery technologies: a static potential for power
191(18)
Pavlos Nikolaidis
Andreas Poidlikkas
9.1 Introduction
191(3)
9.2 Principles of operation
194(6)
9.2.1 Lead-acid
194(1)
9.2.2 Alkaline
195(1)
9.2.3 Metal-air
196(2)
9.2.4 High temperature
198(1)
9.2.5 Lithium-ion
199(1)
9.3 Battery market and public concerns
200(3)
9.4 Recycling of batteries
203(1)
9.5 Conclusion
204(5)
References
204(5)
10 A critical review with solar radiation analysis model on inclined and horizontal surfaces
209(24)
Figen Balo
Lutfu S. Sua
10.1 Introduction
209(6)
10.1.1 Climate, solar energy potential and electric production in Gaziantep and Sanliurfa
215(1)
10.2 Solar radiation intensity calculation
215(4)
10.2.1 Horizontal surface
215(3)
10.2.2 Calculating solar radiation intensity on inclined surface
218(1)
10.3 Methodology
219(5)
10.4 Findings and Results
224(3)
10.5 Conclusions
227(6)
References
228(5)
11 Nature-based building solutions: circular utilization of photosynthetic organisms
233
Onur Kirdok
Ayga Tokug
11.1 Nature-based solutions
233(2)
11.2 Nature-based building systems
235(8)
11.2.1 Green roofs
235(2)
11.2.2 Green walls
237(2)
11.2.3 Photobioreactors
239(2)
11.2.4 Aquaponics
241(2)
11.3 Algaponic proposal
243(7)
11.3.1 Green roof and water storage
246(1)
11.3.2 Photobioreactor
247(1)
11.3.3 Fish tank
247(1)
11.3.4 Plant beds
248(1)
11.3.5 Other elements of the system
249(1)
11.4 Impact evaluation
250(4)
11.4.1 Contribution of nature-based solutions to climate resilience
250(1)
11.4.2 Water management
251(1)
11.4.3 Green space management
251(1)
11.4.4 Air/ambient quality
252(1)
11.4.5 Urban regeneration
252(1)
11.4.6 Participatory planning and governance
252(1)
11.4.7 Social justice and social cohesion
253(1)
11.4.8 Public health and well-being
253(1)
11.4.9 Potential for new economic opportunities and green jobs
254(1)
11.5 Conclusions
254(1)
References
255(4)
Index 259
David S-K. Ting is a professor in Mechanical, Automotive and Materials Engineering and the founder of the Turbulence & Energy Laboratory at the University of Windsor, Canada. He has co/supervised over seventy graduate students primarily in the Energy and Turbulence areas and co-authored more than one hundred and twenty related journal papers.



Rupp Carriveau is a professor with the Turbulence & Energy Laboratory, University of Windsor, Canada. His research focuses on the smart optimization of energy systems. He collaborates with energy and water utilities, agricultural, and automotive industries. He serves on the boards of several related journals and is Co-Chair of the IEEE Ocean Energy Technology Committee.