Muutke küpsiste eelistusi

E-raamat: Energy Minimization Methods in Computer Vision and Pattern Recognition: 7th International Conference, EMMCVPR 2009, Bonn, Germany, August 24-27, 2009, Proceedings

Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Overthelastdecades,energyminimizationmethods havebecomeanestablished paradigm to resolve a variety of challenges in the ?elds of computer vision and pattern recognition. While traditional approaches to computer vision were often based on a heuristic sequence of processing steps and merely allowed very l- ited theoretical understanding of the respective methods, most state-of-the-art methods are nowadays based on the concept of computing solutions to a given problem by minimizing respective energies. This volume contains the papers presented at the 7th International Conf- ence on Energy Minimization Methods in Computer Vision and Pattern Rec- nition (EMMCVPR 2009), held at the University of Bonn, Germany, August 24-28, 2009. These papers demonstrate that energy minimization methods have become a mature ?eld of research spanning a broad range of areas from discrete graph theoretic approaches and Markov random ?elds to variational methods and partial di erential equations. Application areas include image segmentation and tracking, shape optimization and registration, inpainting and image deno- ing, color and texture modeling, statistics and learning. Overall, we received 75 high-quality double-blind submissions. Based on the reviewer recommendations, 36paperswereselectedforpublication,18asoraland18asposterpresentations. Both oral and poster papers were attributed the same number of pages in the conference proceedings. Furthermore, we were delighted that three leading experts from the ?elds of computer vision and energy minimization, namely, Richard Hartley (C- berra, Australia), Joachim Weickert (Saarbruc .. ken, Germany) and Guillermo Sapiro(Minneapolis,USA)agreedtofurtherenrichtheconferencewithinspiring keynote lectures.
Discrete Optimization and Markov Random Fields.- Multi-label Moves for
MRFs with Truncated Convex Priors.- Detection and Segmentation of
Independently Moving Objects from Dense Scene Flow.- Efficient Global
Minimization for the Multiphase Chan-Vese Model of Image Segmentation.-
Bipartite Graph Matching Computation on GPU.- Pose-Invariant Face Matching
Using MRF Energy Minimization Framework.- Parallel Hidden Hierarchical Fields
for Multi-scale Reconstruction.- General Search Algorithms for Energy
Minimization Problems.- Partial Differential Equations.- Complex Diffusion on
Scalar and Vector Valued Image Graphs.- A PDE Approach to Coupled
Super-Resolution with Non-parametric Motion.- On a Decomposition Model for
Optical Flow.- A Schrödinger Wave Equation Approach to the Eikonal Equation:
Application to Image Analysis.- Computing the Local Continuity Order of
Optical Flow Using Fractional Variational Method.- A Local Normal-Based
Region Term for Active Contours.- Segmentation and Tracking.- Hierarchical
Pairwise Segmentation Using Dominant Sets and Anisotropic Diffusion Kernels.-
Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic Weighted
TV.- Complementary Optic Flow.- Parameter Estimation for Marked Point
Processes. Application to Object Extraction from Remote Sensing Images.-
Three Dimensional Monocular Human Motion Analysis in End-Effector Space.-
Robust Segmentation by Cutting across a Stack of Gamma Transformed Images.-
Shape Optimization and Registration.- Integrating the Normal Field of a
Surface in the Presence of Discontinuities.- Intrinsic Second-Order Geometric
Optimization for Robust Point Set Registration without Correspondence.-
Geodesics in Shape Space via Variational Time Discretization.- Image
Registration under Varying Illumination:Hyper-Demons Algorithm.- Hierarchical
Vibrations: A Structural Decomposition Approach for Image Analysis.-
Inpainting and Image Denoising.- Exemplar-Based Interpolation of Sparsely
Sampled Images.- A Variational Framework for Non-local Image Inpainting.-
Image Filtering Driven by Level Curves.- Color Image Restoration Using
Nonlocal Mumford-Shah Regularizers.- Reconstructing Optical Flow Fields by
Motion Inpainting.- Color and Texture.- Color Image Segmentation in a
Quaternion Framework.- Quaternion-Based Color Image Smoothing Using a
Spatially Varying Kernel.- Locally Parallel Textures Modeling with Adapted
Hilbert Spaces.- Global Optimal Multiple Object Detection Using the Fusion of
Shape and Color Information.- Statistics and Learning.- Human Age Estimation
by Metric Learning for Regression Problems.- Clustering-Based Construction of
Hidden Markov Models for Generative Kernels.- Boundaries as Contours of
Optimal Appearance and Area of Support.