Muutke küpsiste eelistusi

E-raamat: Energy Simulation in Building Design

  • Formaat: 384 pages
  • Ilmumisaeg: 02-Nov-2007
  • Kirjastus: Routledge
  • ISBN-13: 9781136406768
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 84,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 384 pages
  • Ilmumisaeg: 02-Nov-2007
  • Kirjastus: Routledge
  • ISBN-13: 9781136406768
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since the appearance of the first edition of 'Energy Simulation in Building Design', the use of computer-based appraisal tools to solve energy design problems within buildings has grown rapidly. A leading figure in this field, Professor Joseph Clarke has updated his book throughout to reflect these latest developments. The book now includes material on combined thermal/lighting and CFD simulation, advanced glazings, indoor air quality and photovoltaic components. This thorough revision means that the book remains the key text on simulation for architects, building engineering consultants and students of building engineering and environmental design of buildings.

The book's purpose is to help architects, mechanical & environmental engineers and energy & facility managers to understand and apply the emerging computer methods for options appraisal at the individual building, estate, city, region and national levels. This is achieved by interspersing theoretical derivations relating to simulation within an evolving description of the built environment as a complex system. The premise is that the effective application of any simulation tool requires a thorough understanding of the domain it addresses.

Arvustused

'I use the first edition and look forward to using the update' Dr F Winkelman, Lawrence Berkeley Laboratory, Berkeley, USA

'There is certainly a need for comprehensive guides to the practice of building simulation. Since the publication of the first edition of this book there has been growth in the community of simulation users.' Chris Hancock, Architect.

Preface ix
1 Introduction
1(21)
1.1 A brief history of simulation
3(2)
1.2 Simulation overview
5(2)
1.3 Integrative modelling
7(1)
1.4 Energy flowpaths and causal effects
7(11)
1.5 The need for accuracy and flexibility
18(1)
1.6 Energy modelling techniques
19(1)
1.7 References and further reading
19(3)
2 Integrative modelling methods
22(42)
2.1 Response function methods
22(3)
2.2 Time-domain response functions
25(15)
2.2.1 Multi-layered constructions
28(4)
2.2.2 Zone energy balance
32(7)
2.2.3 Response function application
39(1)
2.3 Frequency domain response functions
40(11)
2.3.1 Multi-layered constructions
41(5)
2.3.2 Zone energy balance
46(1)
2.3.3 Response function application
46(5)
2.4 Numerical methods
51(9)
2.4.1 Taylor series expansion
52(4)
2.4.2 Control volume heat balance
56(1)
2.4.3 Numerical solution techniques
57(3)
2.5 Which method?
60(1)
2.6 References and further reading
61(3)
3 Building simulation
64(35)
3.1 System discretisation
65(4)
3.2 Finite volume energy equation formulation
69(22)
3.2.1 Capacity/insulation systems
71(11)
3.2.2 Exposed surface layers
82(4)
3.2.3 Fluid volumes
86(5)
3.3 Equation structuring
91(7)
3.4 References and further reading
98(1)
4 Processing the building energy equations
99(27)
4.1 Establishing the energy matrix equation
100(13)
4.1.1 Single zone formulation
100(8)
4.1.2 Zone contents and plant interaction
108(2)
4.1.3 Multi-zone systems
110(2)
4.1.4 Treatment of time-dependent properties
112(1)
4.1.5 Adiabatic boundaries
113(1)
4.2 Matrix partitioning for fast simultaneous solution
113(12)
4.2.1 Single zone solution
115(8)
4.2.2 Multi-zone solution
123(1)
4.2.3 Solution on the basis of complex criteria
123(1)
4.2.4 Treatment of non-linear systems
124(1)
4.3 Mixed frequency inversion
125(1)
4.4 References and further reading
125(1)
5 Fluid flow
126(31)
5.1 The nodal network method
127(10)
5.1.1 Boundary conditions
128(2)
5.1.2 Node definition
130(1)
5.1.3 Buoyancy effects
130(1)
5.1.4 Component flow models
131(4)
5.1.5 Iterative solution procedure
135(2)
5.2 Computational fluid dynamics
137(9)
5.2.1 Domain discretisation
138(2)
5.2.2 Conserving energy, mass, momentum and species concentration
140(3)
5.2.3 Initial and boundary conditions
143(1)
5.2.4 Iterative solution procedure
144(1)
5.2.5 Results interpretation
144(2)
5.3 Moisture flow within porous media
146(2)
5.4 Linking the building and flow domains
148(3)
5.5 References and further reading
151(6)
6 HVAC, renewable energy conversion and control systems
157(45)
6.1 Approaches to systems simulation
158(1)
6.2 HVAC systems
159(26)
6.2.1 Air conditioning
159(8)
6.2.1.1 Component process models: algorithmic
167(1)
6.2.1.2 Component process models: numerical
168(1)
6.2.1.3 Modelling by `primitive parts'
169(4)
6.2.2 Active solar
173(5)
6.2.3 Wet central heating
178(7)
6.3 New and renewable energy conversion systems
185(8)
6.3.1 Electrical power flow
187(2)
6.3.2 Electrical component models
189(4)
6.4 Control systems
193(3)
6.5 Linking the building, flow and systems models
196(2)
6.6 References and further reading
198(4)
7 Energy-related sub-systems
202(79)
7.1 Weather
202(10)
7.1.1 Availability of weather data
201(2)
7.1.2 Weather collection classification
203(2)
7.1.3 Climate severity assessment
205(7)
7.2 Geometrical considerations
212(2)
7.3 Shading and insolation
214(7)
7.3.1 Insolation transformation equations
215(3)
7.3.2 The complete translation, rotation and projection equations
218(3)
7.3.3 An insolation algorithm
221(1)
7.4 Shortwave radiation processes
221(15)
7.4.1 Solar position
223(1)
7.4.2 Solar radiation prediction
224(2)
7.4.3 Inclined surface irradiance
226(3)
7.4.4 Reflection, absorption and transmission within transparent media
229(5)
7.4.5 Intra-zone shortwave distribution
234(2)
7.5 Longwave radiation processes
236(20)
7.5.1 Exchange between internal surfaces
237(7)
7.5.2 View factor determination
244(10)
7.5.3 Linearised longwave radiation coefficients
254(1)
7.5.4 Exchange between external surfaces
254(2)
7.6 Surface convection
256(6)
7.6.1 Natural convection at internal surfaces
256(2)
7.6.2 Forced convection at internal and external surfaces
258(4)
7.7 Casual heat sources
262(1)
7.8 Daylight prediction
262(11)
7.8.1 Sky luminance distribution
263(1)
7.8.2 Internal illuminance distribution: analytical method
263(6)
7.8.3 Internal illuminance distribution: numerical method
269(1)
7.8.4 Photocell response
270(3)
7.9 Mould growth
273(2)
7.10 References and further reading
275(6)
8 Use in practice
281(27)
8.1 Validation
282(1)
8.1 User interface
283(2)
8.3 Performance assessment method
285(13)
8.4 Uncertainty
298(2)
8.5 Large scale considerations
300(1)
8.6 Support mechanisms
301(2)
8.7 Example applications
303(3)
8.8 References and further reading
306(2)
9 Future trends
308(17)
9.1 Design process integration
308(8)
9.1.1 Integrated product models
309(1)
9.1.2 Intelligent interfaces
310(6)
9.2 Virtual construction
316(7)
9.3 Concluding remark
323(1)
9.4 References and further reading
323(2)
Appendix A Thermophysical properties 325(15)
Appendix B Deficiencies of simplified methods 340(2)
Appendix C Fourier heat equation and construction time constant 342(3)
Appendix D Admittance method: worked example 345(3)
Appendix E Point containment algorithm 348(1)
Appendix F Radiosity based lighting simulation 349(6)
Appendix G The ESP-r system 355(2)
Index 357