Muutke küpsiste eelistusi

E-raamat: Engineering Fluid Mechanics

  • Formaat: 694 pages
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351987707
  • Formaat - EPUB+DRM
  • Hind: 62,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 694 pages
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351987707

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fluid mechanics is a core component of many undergraduate engineering courses. It is essential for both students and lecturers to have a comprehensive, highly illustrated textbook, full of exercises, problems and practical applications to guide them through their study and teaching. Engineering Fluid Mechanics By William P. Grabel is that book
The ISE version of this comprehensive text is especially priced for the student market and is an essential textbook for undergraduates (particularly those on mechanical and civil engineering courses) designed to emphasis the physical aspects of fluid mechanics and to develop the analytical skills and attitudes of the engineering student.
Example problems follow most of the theory to ensure that students easily grasp the calculations, step by step processes outline the procedure used, so as to improve the students' problem solving skills. An Appendix is included to present some of the more general considerations involved in the design process.
The author also links fluid mechanics to other core engineering courses an undergraduate must take (heat transfer, thermodynamics, mechanics of materials, statistics and dynamics) wherever possible, to build on previously learned knowledge.
Preface xiii
Introduction to Fluid Mechanics
1(40)
Chapter Overview of Goals
1(1)
Introduction
1(1)
Definitionof a Fluid
2(3)
The Continuum Hypothesis
5(1)
Systems of Units
6(4)
British gravitational system of units
6(1)
SI system of units
7(3)
Stress an Pessure
10(3)
Fluid Properties
13(15)
Mass and weight densities
13(1)
Bulk modulus and coefficient of compressibility
14(2)
Vapor pressure
16(2)
Surface tension
18(7)
No-ship condition
25(1)
Absolute vicosity
26(1)
Kinematic viscosity
27(1)
Non-Newtonian Fluids
28(3)
Problem-solvign Approach
31(10)
Suggestions for Further Reading
33(1)
Problems for
Chapter 1
34(7)
Hydrostatics adn Rigid-Body Motions
41(68)
Chapter Overview and Goals
41(1)
The Hydrostatic Equation
41(9)
Manometers
50(5)
Rise of Liquids Due to Surface Tension
55(6)
Forces on Surfaces
61(17)
Plane surfaces
63(4)
Forces on circular cylindrical surfaces
67(3)
Buoyancy forces
70(3)
Stability of submerged and floating bodies
73(5)
Rigid-Body Accelration
78(2)
Rigid-Body Rotation
80(29)
Suggestions for Further Reading
83(1)
Problems for
Chapter 2
84(25)
Fluid Dynamics
109(84)
Chapter Overview and Goals
109(1)
Flow Properties and Characteristics
109(11)
Aceleration and the Material Derivative
120(3)
Control Volume and Control Surface Concepts
123(3)
Conservaton of Mass---the Continuity Equation
126(4)
Newton's Law---the Linear Momentum Equation
130(3)
Balance of Energy Equation
133(4)
The Entropy Inequality
137(1)
Applications
138(18)
Applications for flow measurement
138(5)
Fans, propellers, windmills, and wind turbines
143(5)
Forces on vanes
148(3)
Miscellaneous applications
151(5)
Unsteady Flows and Translating Control Volumes
156(7)
Unsteady flows
157(2)
Approximately unsteady flows
159(4)
Conservation of Moment-of-Momentum and Rotatign Control Volumes
163(5)
Moment-of-monentum equations for stationary control volumes
163(1)
Moment-of-momentum equations for rotatign control volumes
163(5)
Path Coordinates---the Euler and Bernoulli Equations
168(25)
Application---pitot tubes
170(1)
Suggestions for Further Reading
171(1)
Problems for
Chapter 3
171(22)
Differential Analysis
193(72)
Chapter Overview and Goals
193(1)
The Local Continuity Equation
193(4)
The Stream Function
197(7)
Two-dimensional flows---Lagrange's stream function
197(4)
Three-dimensional flows
201(3)
Equations Governing Inviscid Flows
204(5)
Vorticity and Circulation
209(6)
Irrotational Flows and the Velocity Potential
215(25)
Intersection of velocity potential lines and streamlines
218(1)
Simple two-dimensional irotational flows
219(8)
Hele-Shaw flows
227(1)
Simple three-dimensional irrotational flows
228(1)
Superposition and the method of images
229(11)
Rates of Deformation
240(3)
Stress
243(3)
Constitutive Relations
246(4)
Equations for Newtonian Fluids
250(1)
Boundary Conditions
250(3)
Some Solutions to the Navier-Stokes Equations When Convective Acceleration Is Absent
253(12)
Stokes' first problem---impulsive motion of a plate
253(3)
Stokes' seond problem---oscillation of a plate
256(3)
Suggestions for Further Reading
259(1)
Problems for
Chapter 4
260(5)
Dimensional Analysis
265(30)
Chapter Overview and Goals
265(1)
Introduction
265(1)
Buckingham's Pi Theorem
266(2)
Introductory Example
268(2)
Algebraic Approach for the Formulation of Dimensionless Parameters
270(4)
Interpretation of Dimensionless Parameters as Force Ratios
274(1)
Summary of Steps Involved in Forming Dimensionless Parameters
275(1)
Some Common Dimensionless Parameters
276(2)
Examples of the Use of Dimensionless Parameters
278(3)
Model Studies---Similitude
281(3)
Experimental Facilities
284(11)
Froude number facilities
284(1)
Mach number facilities
285(1)
Cavitation number facilities
285(2)
Suggestions for Further Reading
287(1)
Problems for
Chapter 5
288(7)
Laminar Viscous Flow
295(52)
Chapter Overview and Goals
295(1)
Flow between parallel Plantes
296(7)
Solid Plates at both boundaries
299(2)
Solid plate plus a free surface
301(2)
Lubrication
303(5)
Flow in a Circular Tube or Annulus
308(9)
Circular tube
310(3)
Circular annulus
313(4)
Stability of Tube Flow
317(2)
Boundary Layer Theory
319(12)
Flow Separation
331(16)
Suggestions for Further Reading
336(1)
Problems for Chaper 6
336(11)
Turbulent Viscous Flow
347(56)
Chapter Overview and Goals
347(1)
Reynolds Stresses
348(2)
Eddy Viscosity and Mixing Length Concepts
350(1)
Turbulent Pipe Flow
351(18)
Minor Losses
363(3)
Multiple pipe circuits
366(3)
Hydraulic and energy grade lines
369(1)
Turbulent Boundary Layer Flows
369(12)
Fully established turbulent flow in a smooth pipe
369(4)
Momentum integral formulation
373(2)
Turbulent flow past smooth flat plates with zero pressure gradient
375(4)
Rough walls
379(2)
Drag and Lift Forces
381(22)
vehicle drag
385(2)
Lift forces---the Magnus effect
387(2)
Airfoils
389(3)
References and Suggestions for Further Reading
392(1)
Problems for
Chapter 7
393(10)
Open Channel Flows
403(44)
Chapter Oerviw and Goals
403(1)
Introduction
403(1)
Forces on Spillways
404(2)
Forces on Gates
406(2)
Flow Over a small Bump in a Channel
408(4)
Small-Amplitude Standig Gravity Waves
412(2)
Hydraulic Jumps
414(4)
Unsteady Flows---Moving Waves---Bores
418(3)
Channel Cross Section Shape Effects in Open Channel Flow
421(2)
Uniform flow
422(1)
Channels with Optimum Shape
423(5)
Channels with Gradual Slope
428(5)
Dams
433(14)
Suggestions for Further Reading
437(1)
Problems for
Chapter 8
438(9)
Compressible Flows
447(54)
Chapter Overview and Goals
447(1)
The Speed of sound
448(4)
Effects of Gas Entrainment on Bulk Modulus and Sonic Speed
452(2)
Water Hammer
454(5)
Pipe closed-ended
457(1)
Pipe constrained from changing length
457(1)
Pipe open-ended
458(1)
Ideal Gas Thermodynamics
459(3)
Isentropic Flow of an Ideal Gas
462(9)
Normal Shock Waves
471(8)
Flow in a Nozzle
479(4)
Oblique and Curved Shock Waves
483(4)
Adiabatic Pipe Flow with Friction
487(5)
Frictionless Pipe Flow with Heat Transfer
492(9)
Suggestions for Further Reading
495(1)
Problems for
Chapter 9
495(6)
Measurement of Flow and Fluid Properties
501(32)
Chapter Overview
501(1)
Velocity-measuring Devices
501(6)
Pitot tubes
501(2)
Hot-wire and hot-film anemometers
503(1)
Laser Doppler velocimeter
504(3)
Volume Rate-measuring Devices
507(11)
Venturi meter
507(2)
Orifice plate
509(1)
Nozzles
509(1)
Elbow meter
510(1)
Positive displacement meter
511(1)
Rotameter
512(1)
Turbne meter
513(1)
Doppler-acoustic flow meter
514(1)
Vortex-shedding flow meter
514(1)
Magnetic flow meter
515(1)
Weirs
515(2)
Integration of velocity measurements
517(1)
Mass Rate-measuring Devices
518(2)
Hasting mass flow meter
518(1)
Coriolis force mass flow meter
519(1)
Pressure-measuring Devices
520(2)
Bourdon-type gage
520(1)
Strain gage and capacitance gage pressure cells
521(1)
Piezoelectric crystals and semiconductors
522(1)
Viscosity-measuring Devices
522(4)
Rotating chlinder viscometer
523(1)
Oswald-Cannon-Fenske viscometer
523(1)
Saybolt viscometer
524(1)
Falling-body viscometer
525(1)
Surface-Tension-measuring Device
526(1)
Calibration
527(6)
Suggestions for Further Reading
529(1)
Problems for
Chapter 10
530(3)
Hydraulic Machinery
533(34)
Chapter Overview and Goals
533(1)
Pump Classification and Selection
533(2)
Positive displacement pumps
533(1)
Turbomachine pumps
534(1)
Centrifugal Machines
535(3)
Centrifugal Pumps
538(8)
Positive Displacement Pumps
546(1)
Axial Flow Fans and Pumps
547(5)
Other Pumps
552(3)
Hydraulic Turbines
555(12)
Impulse Turbines
556(3)
Reaction turbines
559(2)
Suggestions for Further Reading
561(2)
Problems for
Chapter 11
563(4)
Conclusion
567(10)
References for Further Study
572(5)
Appendix A. Conversion of Units and Useful Constants
577(8)
Classified list of units
577(4)
SI base units
581(1)
Supplementary SI units
581(1)
British derived units
581(1)
SI derived units
582(1)
CGS units and their SI equivalents
582(1)
Abbreviations
583(1)
Prefixes
583(1)
Useful constants
583(2)
Appendix B. Fluid Propeties
585(10)
Suface tensions for various fluids
585(1)
Surface tensions of water and alcohol
585(1)
Absolute viscosity vs. temperature (SI units)
586(1)
Kinematic viscosity vs. temperature (SI units)
587(1)
Absolute visocisity vs. temperature (British units)
588(1)
Kinematic viscosity vs. temperature (British units)
589(1)
Contact angles for various fluids
590(1)
Approximate physical properties of water
590(1)
Approximate physical properties of some common liquids
590(1)
SAE motor oil viscosity allowable ranges
591(1)
Approximate physical properties of air
591(1)
Approximate physical propeties of some common gases
592(1)
Properties of the U.S. Standard Atmosphere
592(1)
References
593(2)
Appendix C. Mathematical Aids
595(12)
Solution of Algebraic Equations---Descartes' Rule of Signs
595(1)
Cubic Equations
595(2)
Newton's Method for Finding the Roots of an Algebraic Equation
597(2)
Numerical Integration of Ordinary Differential Equations
599(2)
The Navier-Stokes Equations in Curvilinear Coordinates
601(6)
Cylindrical polar coordinates
603(1)
Spherical polar coordinates
604(3)
Appendix D. Compressible Flow Table for Air (k = 1.4)
607(6)
Appendix E. A Brief History of Fluid Mechanics
613(16)
References on the History of Fluid Mechanics
626(3)
Appendix F. Design of a Pump System
629(6)
System Diagrams
629(3)
Arrangement Drawings
632(1)
System Pressure Loss Calculations
633(2)
Appendix G. Some Suggestions for Design Problems
635(6)
Glossary 641(8)
Answers to Even Numbered Problems 649(8)
Index 657
William Graebel