Preface |
|
xiii | |
Authors |
|
xv | |
1 Review of Basic Concepts |
|
1 | (44) |
|
|
1 | (5) |
|
1.1.1 Rounding Numbers (Common Method) |
|
|
1 | (1) |
|
1.1.2 Round-to-Even Method |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (2) |
|
1.2 Scientific Notation (Standard Form) |
|
|
6 | (3) |
|
1.2.1 How Does Scientific Notation Work? |
|
|
7 | (1) |
|
1.2.2 Addition and Subtraction |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.3.2 Evaluating Expressions |
|
|
10 | (1) |
|
|
10 | (7) |
|
1.4.1 Solving Linear Equations |
|
|
10 | (3) |
|
1.4.2 Transposing Formulae |
|
|
13 | (4) |
|
1.5 Linear Simultaneous Equations |
|
|
17 | (3) |
|
|
18 | (2) |
|
1.5.2 Substitution Method |
|
|
20 | (1) |
|
|
20 | (3) |
|
1.6.1 Solving Quadratic Equations Using the Formula |
|
|
21 | (2) |
|
|
23 | (8) |
|
1.7.1 Right-Angled Triangles |
|
|
23 | (2) |
|
1.7.2 Scalene Triangles (Sine and Cosine Rules) |
|
|
25 | (3) |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
28 | (1) |
|
1.7.3.1 Adding Two Forces |
|
|
28 | (1) |
|
1.7.4 Basic Trigonometric Identities |
|
|
29 | (1) |
|
|
30 | (1) |
|
1.7.5.1 Radians on the Calculator |
|
|
31 | (1) |
|
|
31 | (9) |
|
|
31 | (1) |
|
1.8.2 Measures of Averages |
|
|
32 | (4) |
|
1.8.2.1 Data in a Frequency Table |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (3) |
|
|
36 | (1) |
|
1.8.3.2 Interquartile Range |
|
|
36 | (1) |
|
1.8.3.3 Standard Deviation (σ) |
|
|
37 | (1) |
|
1.8.3.4 Sample Standard Deviation (s) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (2) |
|
|
42 | (3) |
2 Introduction to Probability Theory |
|
45 | (20) |
|
|
45 | (7) |
|
2.1.1 Mutually Exclusive Events |
|
|
46 | (1) |
|
|
47 | (1) |
|
2.1.3 Conditional Probability |
|
|
48 | (1) |
|
|
49 | (2) |
|
2.1.4.1 Generalization of Bayes' Theorem |
|
|
50 | (1) |
|
|
51 | (1) |
|
2.2 Discrete Random Variables |
|
|
52 | (3) |
|
2.2.1 Discrete Probability Distribution |
|
|
52 | (2) |
|
|
54 | (1) |
|
2.2.3 Variance and Standard Deviation |
|
|
54 | (1) |
|
2.3 Continuous Random Variables |
|
|
55 | (5) |
|
2.3.1 Probability Density Function (pdf) |
|
|
56 | (1) |
|
2.3.2 Cumulative Distribution Function (cdf) |
|
|
56 | (2) |
|
2.3.3 Expectation of a Continuous Random Variable |
|
|
58 | (1) |
|
2.3.4 Variance and Standard Deviation of a Continuous Random Variable |
|
|
58 | (2) |
|
|
60 | (3) |
|
|
63 | (2) |
3 Vectors and Geometrical Applications |
|
65 | (16) |
|
|
65 | (9) |
|
3.1.1 Magnitude and Unit Vectors |
|
|
66 | (2) |
|
|
67 | (1) |
|
3.1.2 Addition and Subtraction of Vectors |
|
|
68 | (1) |
|
3.1.3 Scalar and Vector Products |
|
|
69 | (3) |
|
3.1.3.1 Scalar Product (Dot Product) |
|
|
69 | (1) |
|
3.1.3.2 Vector Product (Cross Product) |
|
|
70 | (1) |
|
3.1.3.3 How to Calculate a x b |
|
|
71 | (1) |
|
3.1.4 Projection of Vectors |
|
|
72 | (2) |
|
|
74 | (4) |
|
3.2.1 Vector Equation of a Line |
|
|
74 | (2) |
|
3.2.1.1 Intersection of Lines |
|
|
75 | (1) |
|
3.2.2 Vector Equation of Planes |
|
|
76 | (5) |
|
3.2.2.1 Generalizing for Any Plane in Space |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (2) |
4 Determinants and Matrices |
|
81 | (36) |
|
|
81 | (1) |
|
4.2 Introduction to Determinants |
|
|
81 | (6) |
|
|
83 | (1) |
|
4.2.2 Properties of Determinants |
|
|
83 | (2) |
|
4.2.2.1 Multiplying a Determinant by a Number |
|
|
84 | (1) |
|
|
85 | (2) |
|
4.3 Introduction to Matrices |
|
|
87 | (16) |
|
|
88 | (1) |
|
4.3.2 Addition and Subtraction |
|
|
88 | (1) |
|
4.3.3 Matrix Multiplication |
|
|
88 | (4) |
|
4.3.3.1 Multiplying a Matrix by a Scalar |
|
|
88 | (1) |
|
4.3.3.2 Multiplying Two Matrices |
|
|
89 | (1) |
|
4.3.3.3 How to Multiply Two Matrices |
|
|
89 | (3) |
|
|
92 | (2) |
|
|
94 | (1) |
|
4.3.6 Inverse of a Square Matrix |
|
|
94 | (2) |
|
4.3.7 Eigenvalues and Eigenvectors |
|
|
96 | (4) |
|
4.3.8 Diagonal Factorization of Matrices |
|
|
100 | (3) |
|
4.4 Solving Systems of Linear Equations |
|
|
103 | (7) |
|
|
103 | (1) |
|
4.4.2 Gaussian Elimination Method |
|
|
104 | (4) |
|
4.4.3 Matrix Inversion Method |
|
|
108 | (9) |
|
4.4.3.1 Matrix Method for Solving Simultaneou Equations |
|
|
108 | (2) |
|
|
110 | (4) |
|
|
114 | (3) |
5 Complex Numbers |
|
117 | (14) |
|
|
117 | (1) |
|
5.2 Introduction and the Imaginary j |
|
|
117 | (1) |
|
5.2.1 Some Properties of j |
|
|
118 | (1) |
|
|
118 | (1) |
|
5.3 Arithmetic Operations |
|
|
118 | (2) |
|
5.3.1 Addition and Subtraction |
|
|
118 | (1) |
|
|
119 | (1) |
|
5.3.2.1 Conjugate Numbers |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.4.1 Drawing a Diagram of Complex Numbers |
|
|
120 | (1) |
|
5.5 Polar and Exponential Form |
|
|
120 | (3) |
|
|
120 | (2) |
|
5.5.1.1 Multiplying and Dividing Complex Numbers in Polar Form |
|
|
121 | (1) |
|
|
122 | (1) |
|
5.5.3 Powers of Complex Numbers |
|
|
122 | (1) |
|
5.5.4 De Moivre's Theorem |
|
|
122 | (1) |
|
|
123 | (2) |
|
|
125 | (4) |
|
|
129 | (2) |
6 Introduction to Calculus |
|
131 | (40) |
|
|
131 | (13) |
|
6.1.1 Definition of a Limit |
|
|
131 | (5) |
|
6.1.1.1 Differentiating Fractional and Negative Powers of x |
|
|
135 | (1) |
|
6.1.2 Stationary Points (Maxima and Minima) |
|
|
136 | (3) |
|
|
137 | (1) |
|
6.1.2.2 Second Derivative Method |
|
|
138 | (1) |
|
6.1.3 Differentiating Products and Quotients |
|
|
139 | (2) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (2) |
|
6.1.5 Function of a Function (Chain Rule) |
|
|
143 | (1) |
|
|
144 | (11) |
|
6.2.1 Introduction and the Riemann Sum |
|
|
144 | (2) |
|
6.2.2 Fundamental Theorem of Calculus (Optional Section) |
|
|
146 | (3) |
|
6.2.2.1 How to Compute the Integral ba f(x)dx |
|
|
146 | (3) |
|
6.2.3 Standard Integrals and Areas under Curves |
|
|
149 | (3) |
|
6.2.3.1 Finding the Area under a Curve |
|
|
150 | (2) |
|
|
152 | (3) |
|
6.3 Integration Techniques |
|
|
155 | (9) |
|
|
155 | (2) |
|
|
157 | (5) |
|
6.3.2.1 Type 1: Different Linear Factors |
|
|
158 | (1) |
|
6.3.2.2 Type 2: Denominator with a Repeated Factor |
|
|
159 | (1) |
|
6.3.2.3 Type 3: Denominator with a Quadratic Factor |
|
|
160 | (1) |
|
6.3.2.4 Performing the Final Integration |
|
|
161 | (1) |
|
6.3.3 Integration by Parts |
|
|
162 | (2) |
|
|
164 | (3) |
|
|
167 | (4) |
7 Ordinary Linear Differential Equations |
|
171 | (28) |
|
|
171 | (1) |
|
7.2 Types of Differential Equations |
|
|
172 | (2) |
|
|
172 | (1) |
|
7.2.2 Order of a Differential Equation |
|
|
173 | (1) |
|
7.2.3 Degree of a Differential Equation |
|
|
173 | (1) |
|
|
173 | (1) |
|
7.2.5 What Is Meant by Solving Differential Equations? |
|
|
174 | (1) |
|
7.3 First-Order Differential Equations |
|
|
174 | (8) |
|
|
175 | (1) |
|
7.3.2 Separating Variables |
|
|
175 | (4) |
|
7.3.3 Integrating Factor Technique |
|
|
179 | (3) |
|
7.4 Second-Order Differential Equations |
|
|
182 | (9) |
|
7.4.1 Complementary Function (CF) |
|
|
183 | (2) |
|
7.4.1.1 General Solution for the Complementary Function |
|
|
183 | (1) |
|
7.4.1.2 How to Find the Complementary Function |
|
|
184 | (1) |
|
|
185 | (3) |
|
7.4.2.1 Case 1: Real and Distinct Roots m1 and m2 |
|
|
185 | (1) |
|
7.4.2.2 Case 2: Real and Repeated Roots |
|
|
186 | (1) |
|
7.4.2.3 Case 3: Complex Conjugate Roots |
|
|
187 | (1) |
|
7.4.3 Particular Integral (PI) |
|
|
188 | (13) |
|
7.4.3.1 How to Find the Particular Integral |
|
|
188 | (3) |
|
|
191 | (6) |
|
|
197 | (2) |
8 Laplace Transforms |
|
199 | (30) |
|
8.1 Why Do We Need the Laplace Transform? |
|
|
199 | (1) |
|
8.2 Derivation from a Power Series |
|
|
200 | (1) |
|
8.3 Introduction and Standard Transforms |
|
|
201 | (6) |
|
8.3.1 Schematic Representation of Laplace Transforms |
|
|
202 | (1) |
|
8.3.2 Standard Transforms |
|
|
202 | (3) |
|
8.3.3 Linearity of Laplace Transforms |
|
|
205 | (1) |
|
|
205 | (2) |
|
|
207 | (3) |
|
8.5 Discontinuous Functions |
|
|
210 | (3) |
|
8.5.1 Heaviside Unit Step Function |
|
|
210 | (2) |
|
8.5.1.1 Calculating the Laplace Transform of H(t-c) |
|
|
210 | (1) |
|
8.5.1.2 Unit Step at Origin |
|
|
211 | (1) |
|
|
212 | (18) |
|
8.5.2.1 The Delta Function at the Origin |
|
|
212 | (1) |
|
|
213 | (1) |
|
8.7 Method for Solving Linear Differential Equations |
|
|
214 | (5) |
|
|
219 | (8) |
|
|
227 | (2) |
9 Fourier Series and Fourier Transforms |
|
229 | (26) |
|
|
229 | (1) |
|
|
230 | (8) |
|
9.2.1 Periodic Functions of Period T |
|
|
230 | (1) |
|
9.2.2 General Properties and Orthogonal Functions |
|
|
231 | (1) |
|
9.2.3 Fourier Coefficients |
|
|
232 | (6) |
|
9.3 Complex Form of the Fourier Series |
|
|
238 | (4) |
|
|
242 | (8) |
|
9.4.1 Nonperiodic Functions |
|
|
242 | (1) |
|
9.4.2 Fourier Transform Pair |
|
|
242 | (3) |
|
9.4.3 What Does the Fourier Transform Represent? |
|
|
245 | (2) |
|
9.4.4 Properties of the Fourier Transform |
|
|
247 | (1) |
|
9.4.4.1 Linearity Property |
|
|
247 | (1) |
|
9.4.5 Convolution of Two Functions |
|
|
248 | (2) |
|
|
250 | (3) |
|
|
253 | (2) |
10 Multivariable Calculus |
|
255 | (42) |
|
|
255 | (14) |
|
10.1.1 Introduction and Definition |
|
|
255 | (4) |
|
10.1.1.1 Partial Derivatives Defined |
|
|
256 | (1) |
|
10.1.1.2 Instantaneous Rate of Change |
|
|
257 | (2) |
|
10.1.2 Higher Derivatives |
|
|
259 | (1) |
|
10.1.2.1 Clairaut's Theorem |
|
|
259 | (1) |
|
10.1.2.2 Antiderivatives When There Are Multiple Variables |
|
|
259 | (1) |
|
|
260 | (3) |
|
10.1.3.1 Chain Rule with One Variable |
|
|
260 | (1) |
|
10.1.3.2 Chain Rule with Multivariables |
|
|
261 | (2) |
|
10.1.4 Directional Derivatives and Gradients |
|
|
263 | (3) |
|
10.1.5 Stationary Points (Maxima, Minima, and Saddle Points) |
|
|
266 | (3) |
|
10.1.5.1 Summary to Find Maximum or Minimum Points |
|
|
268 | (1) |
|
10.2 Higher-Order Integration |
|
|
269 | (20) |
|
10.2.1 Double Integrals and Fubini's Theorem |
|
|
269 | (4) |
|
10.2.1.1 An Application of Double Integration |
|
|
272 | (1) |
|
10.2.2 Double Integration Using Polar Coordinates |
|
|
273 | (5) |
|
10.2.2.1 Using Polar Coordinates to Calculate Double Integrals |
|
|
274 | (4) |
|
|
278 | (3) |
|
|
281 | (2) |
|
10.2.4.1 Cartesian Coordinates |
|
|
281 | (2) |
|
10.2.5 3-D Coordinate Systems |
|
|
283 | (3) |
|
10.2.5.1 Integrals in the New Coordinate Systems |
|
|
284 | (2) |
|
10.2.6 General Change of Coordinate Systems |
|
|
286 | (3) |
|
|
289 | (6) |
|
10.3.1 Application of Double Integration |
|
|
289 | (3) |
|
10.3.2 Application of Triple Integration (Center of Mass) |
|
|
292 | (3) |
|
|
295 | (2) |
11 Vector Calculus |
|
297 | (60) |
|
11.1 Differentiation and Integration of Vectors |
|
|
297 | (3) |
|
11.1.1 Derivatives of Vector Functions |
|
|
297 | (2) |
|
11.1.2 Integrating Vector Functions |
|
|
299 | (1) |
|
|
300 | (3) |
|
|
303 | (5) |
|
11.3.1 The ds-Type Integral |
|
|
303 | (2) |
|
11.3.2 The dr-Type Integral |
|
|
305 | (3) |
|
11.3.3 Summary of Results |
|
|
308 | (1) |
|
|
308 | (8) |
|
11.4.1 Conservative Vector Fields |
|
|
310 | (3) |
|
11.4.2 Testing for Conservativeness |
|
|
313 | (3) |
|
|
316 | (5) |
|
11.5.1 Properties of Green's Theorem |
|
|
319 | (2) |
|
11.6 Divergence and Curl of Vector Fields |
|
|
321 | (6) |
|
11.6.1 2-Dimensional Definitions |
|
|
321 | (2) |
|
11.6.2 Alternative Forms of Green's Theorem |
|
|
323 | (2) |
|
|
323 | (1) |
|
|
324 | (1) |
|
11.6.3 3-Dimensional Definitions |
|
|
325 | (2) |
|
|
327 | (16) |
|
11.7.1 Parametric Surfaces |
|
|
327 | (4) |
|
11.7.1.1 Summary of the Main Types of Surfaces |
|
|
330 | (1) |
|
|
331 | (2) |
|
11.7.3 Tangent Planes and Normal Vectors |
|
|
333 | (3) |
|
11.7.3.1 Normal Vector to the Tangent Plane |
|
|
334 | (1) |
|
11.7.3.2 General Formula for the Normal Vector to a Surface |
|
|
335 | (1) |
|
11.7.4 Normal Vectors to Surfaces |
|
|
336 | (3) |
|
11.7.5 Applications of Surface Integrals |
|
|
339 | (4) |
|
|
343 | (4) |
|
|
347 | (3) |
|
|
350 | (3) |
|
|
353 | (4) |
Answers |
|
357 | (6) |
Index |
|
363 | |