Muutke küpsiste eelistusi

E-raamat: Enhanced Oil Recovery in Shale and Tight Reservoirs

(Professor, Bob L. Herd Department of Petroleum Engineering, Texas Tech University, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Nov-2019
  • Kirjastus: Gulf Professional Publishing
  • Keel: eng
  • ISBN-13: 9780128162712
  • Formaat - PDF+DRM
  • Hind: 193,83 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Nov-2019
  • Kirjastus: Gulf Professional Publishing
  • Keel: eng
  • ISBN-13: 9780128162712

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Oil Recovery in Shale and Tight Reservoirs delivers a current, state-of-the-art resource for engineers trying to manage unconventional hydrocarbon resources. Going beyond the traditional EOR methods, this book helps readers solve key challenges on the proper methods, technologies and options available. Engineers and researchers will find a systematic list of methods and applications, including gas and water injection, methods to improve liquid recovery, as well as spontaneous and forced imbibition. Rounding out with additional methods, such as air foam drive and energized fluids, this book gives engineers the knowledge they need to tackle the most complex oil and gas assets.

  • Helps readers understand the methods and mechanisms for enhanced oil recovery technology, specifically for shale and tight oil reservoirs
  • Includes available EOR methods, along with recent practical case studies that cover topics like fracturing fluid flow back
  • Teaches additional methods, such as soaking after fracturing, thermal recovery and microbial EOR
Acknowledgments ix
1 Introduction to shale and tight reservoirs
1(6)
1.1 Introduction
1(1)
1.2 Definitions of shale and tight reservoirs
2(4)
1.3 Shale and tight resources
6(1)
1.4 Current production technologies
6(1)
2 Huff-n-puff gas injection in oil reservoirs
7(54)
2.1 Introduction
7(1)
2.2 Initial simulation studies of huff-n-puff gas injection
8(1)
2.3 Experimental methods
9(9)
2.4 Effect of core size
18(2)
2.5 Effects of pressure and pressure depletion rate
20(5)
2.6 Effect of soaking time
25(4)
2.7 EOR performance with number of cycles
29(2)
2.8 Effect of injected gas composition
31(6)
2.9 Minimum miscible pressure
37(4)
2.10 Effect of diffusion
41(2)
2.11 Effect of water saturation
43(2)
2.12 Effect of stress-dependent permeability
45(1)
2.13 Huff-n-puff mechanisms
46(5)
2.14 Gas penetration depth
51(3)
2.15 Field projects
54(7)
3 Asphaltene precipitation and deposition in a huff-n-puff process
61(20)
3.1 Introduction
61(1)
3.2 Experiments of asphaltene precipitation and permeability reduction
61(8)
3.3 Deposition mechanisms
69(2)
3.4 Numerical analysis
71(4)
3.5 Effect of asphaltene deposition on huff-n-puff optimization
75(6)
4 Huff-n-puff injection in shale gas condensate reservoirs
81(36)
4.1 Introduction
81(2)
4.2 Experimental setup
83(1)
4.3 Huff-n-puff gas injection
84(2)
4.4 Huff-n-puff versus gas flooding
86(5)
4.5 Core-scale modeling of gas and solvent performance
91(7)
4.6 Reservoir-scale modeling of gas and solvent performance
98(3)
4.7 A field case of methanol injection
101(1)
4.8 Surfactant treatment
102(3)
4.9 Factors that affect huff-n-puff gas injection performance
105(4)
4.10 Optimization of huff-n-puff injection
109(1)
4.11 Mechanisms of huff-n-puff injection
110(7)
5 Optimization of huff-n-puff gas injection in shale and tight oil reservoirs
117(16)
5.1 Introduction
117(1)
5.2 Setup of a base simulation model
118(3)
5.3 Optimization principles
121(1)
5.4 Optimization criteria
122(11)
6 Gas flooding compared with huff-n-puff gas injection
133(18)
6.1 Introduction
133(1)
6.2 Research results on gas flooding
133(4)
6.3 Gas flooding versus huff-n-puff gas injection
137(8)
6.4 Field applications of gas flooding
145(4)
6.5 Feasibility of gas flooding
149(2)
7 Water injection
151(22)
7.1 Introduction
151(1)
7.2 Waterflooding
151(5)
7.3 Water huff-n-puff injection
156(6)
7.4 Waterflooding versus huff-n-puff water injection
162(1)
7.5 Water injection versus gas injection
162(4)
7.6 Water-alternating-gas (WAG)
166(1)
7.7 Huff-n-puff water and surfactant injection
166(1)
7.8 Water injection in China
167(6)
8 Fluid-rock interactions
173(40)
8.1 Introduction
173(1)
8.2 Evidences of microfractures generated or existing natural fractures reopened
173(6)
8.3 Effect of confining stress
179(7)
8.4 Effect of bedding
186(1)
8.5 Effect of existing natural fractures
186(1)
8.6 Permeability changes from water-rock interactions
187(4)
8.7 Effect on rock mechanical properties
191(3)
8.8 Further discussions and summary of views and hypotheses
194(3)
8.9 Effect of low-pH and carbonated water
197(5)
8.10 Effect of high-pH water
202(2)
8.11 Cooling effect of injected water
204(1)
8.12 Reaction-induced fractures
205(7)
8.13 Surfactant effects
212(1)
9 EOR mechanisms of wettability alteration and its comparison with IFT
213(66)
9.1 Introduction
213(1)
9.2 Mechanisms of interfacial tension (IFT) reduction
214(3)
9.3 Mechanisms of wettability alteration on oil recovery
217(3)
9.4 Mathematical treatments of wettability alteration and IFT effect
220(6)
9.5 IFT reduction versus wettability alteration
226(10)
9.6 Specific surfactant EOR mechanisms related to shale and tight formations
236(6)
9.7 Surfactant selection for wettability alteration
242(11)
9.8 Determination of wettability
253(23)
9.9 Conversion of wetting angles
276(1)
9.10 More on wettability of shale and tight formations
277(2)
10 Spontaneous imbibition
279(30)
10.1 Introduction
279(1)
10.2 Discussion of some theoretical equations on spontaneous imbibition
279(6)
10.3 Effect of permeability and porosity
285(5)
10.4 Effect of initial wettability and wettability alteration
290(3)
10.5 Effect of interfacial tension (IFT)
293(3)
10.6 Effect of diffusion
296(1)
10.7 Effect of gravity
297(4)
10.8 Effect of viscosity ratio
301(1)
10.9 Effect of initial water content
301(1)
10.10 Countercurrent flow versus cocurrent flow
301(2)
10.11 Behaviors of different surfactants
303(6)
11 Forced imbibition
309(30)
11.1 Introduction
309(1)
11.2 Description of a base shale model
310(5)
11.3 Shale rock versus sand rock
315(6)
11.4 Relative permeability change versus capillary pressure change
321(1)
11.5 Effect of capillary pressure
322(4)
11.6 Effect of pressure gradient (injection rate)
326(5)
11.7 Experimental study of forced imbibition
331(5)
11.8 Field tests of surfactant EOR
336(3)
12 Fracturing fluid flow back
339(62)
12.1 Introduction
339(2)
12.2 Field observations and experimental results on flow back
341(4)
12.3 Proposed mechanisms of low flow back
345(14)
12.4 Effect of shut-in time on flow back
359(16)
12.5 Shut-in time effect on fracture conductivity
375(4)
12.6 Effect of initial wettability on flow back
379(6)
12.7 Effect of invasion depth on flow back efficiency and late time oil rate
385(5)
12.8 Effect of surfactants on flow back
390(5)
12.9 Solutions to deal with flow back
395(6)
13 Air injection
401(56)
13.1 Introduction
401(1)
13.2 Laboratory experimental facilities
402(5)
13.3 Kinetic parameters
407(20)
13.4 Oxidation reactions
427(8)
13.5 Spontaneous ignition
435(17)
13.6 Oxygen consumption rate in low-temperature oxidation
452(1)
13.7 Minimum oil content for combustion
453(1)
13.8 Air requirement in combustion
453(1)
13.9 EOR mechanisms and EOR potential in shale and tight reservoirs
454(3)
14 Other enhanced oil recovery methods
457(12)
14.1 Introduction
457(1)
14.2 Sequential method of huff-n-puff CO2 injection and surfactant-assisted spontaneous imbibition
457(1)
14.3 Chemical blends
458(2)
14.4 Air foam drive
460(1)
14.5 Branched fractures
461(1)
14.6 Zipper fracture
462(1)
14.7 Refracturing
463(1)
14.8 Diversion technology in fracturing
463(1)
14.9 Energized fluids
464(1)
14.10 Thermal recovery
464(3)
14.11 Microbial EOR
467(2)
Nomenclature 469(6)
References 475(38)
Index 513
James Sheng is currently a professor in petroleum engineering at Texas Tech University specializing in oil recovery research. Previously, he was a Senior Research Engineer with Total E&P USA, Team Leader Scientist with Baker Hughes, and a reservoir engineer with Shell, Kuwait Oil Company, and the Research Institute of Petroleum Exploration and Development in China. James has authored 2 books, both with Elsevier, over 70 articles, presented over 100 papers worldwide, and earned 4 patents to date. He earned a PhD and MSc from the University of Alberta, and a BSc from the University of Petroleum in China, all in petroleum engineering.