Muutke küpsiste eelistusi

E-raamat: Ensemble Learning Technology: Fundamentals, Applications, and Future Perspectives

(Associate Professor, Department of Electrical Engineering, R.O.C. Naval Academy, Kaohsiung, Taiwan)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 117,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Ensemble Learning Technology: Fundamentals, Applications, and Future Perspectives
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book offers a comprehensive exploration of ensemble learning (EL), a powerful technique in machine learning and artificial intelligence. This book delves into the principles, methods, and practical applications of EL, emphasizing its significance in achieving robust and accurate predictive models. By integrating multiple models, EL outperforms single-model approaches, making it invaluable in diverse fields such as intelligent transportation systems, industrial monitoring, and smart homes. Through detailed case studies and real-world examples, the book illustrates how EL can be implemented in various scenarios, including the integration of heterogeneous data from edge computing devices within the AIoT framework. The discussion extends to advanced topics like the role of EL in 5G and edge AI, highlighting its potential to enhance performance in adverse conditions and time-sensitive applications. Written for practitioners and researchers, this book balances theoretical foundations with practical insights, encouraging hands-on experimentation and participation in data science competitions. It serves as an essential guide for those seeking to leverage EL's full potential, offering strategies to address real-world challenges and advance AI applications. Whether you are a seasoned data scientist or a newcomer to the field, "Ensemble Learning: Theory and Applications" provides the knowledge and tools to harness the power of ensemble methods effectively"-- Provided by publisher.