Muutke küpsiste eelistusi

E-raamat: Ensemble Machine Learning: Advances in Research and Applications

Edited by (Professor, Head of the Department CSE(AI&ML), Vardhaman College of Engineering. Hyderabad, India)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 240,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Ensemble Machine Learning: Advances in Research and Applications
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book delves into the dynamic realm of ensemble methods, offering a comprehensive exploration of its evolution, methodologies, and diverse applications. Chapters are gathered from the collective wisdom of researchers, practitioners, and innovators who have pioneered this ever-evolving domain. This book serves as a compendium, bringing together theoretical foundations, cutting-edge advancements, and practical insights, catering to both seasoned experts and those venturing into the intricate world of ensemble learning. Each chapter encapsulates the essence of collaboration among diverse models, unveiling the intricacies of ensemble techniques, their fusion strategies, and their impact across industries. From boosting algorithms to bagging, stacking, and beyond, this book illuminates the nuances of ensemble learning, illustrating how these techniques amplify predictive accuracy, enhance generalization, and fortify models against the complexities of real-world data. The editors hope this book will serve as a guiding beacon for enthusiasts, researchers, and practitioners navigating the intricate landscape of ensemble machine learning, fostering innovation, and paving the way for future breakthroughs.