Muutke küpsiste eelistusi

E-raamat: Enthalpy and Internal Energy: Liquids, Solutions and Vapours

Edited by (University of Vienna, Austria), Edited by (University of KwaZuluNatal, South Africa)
  • Formaat: 640 pages
  • Ilmumisaeg: 08-Sep-2017
  • Kirjastus: Royal Society of Chemistry
  • Keel: eng
  • ISBN-13: 9781788010214
  • Formaat - PDF+DRM
  • Hind: 905,17 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 640 pages
  • Ilmumisaeg: 08-Sep-2017
  • Kirjastus: Royal Society of Chemistry
  • Keel: eng
  • ISBN-13: 9781788010214

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Containing the very latest information on all aspects of enthalpy and internal energy as related to fluids, this book brings all the information into one authoritative survey in this well-defined field of chemical thermodynamics. Written by acknowledged experts in their respective fields, each of the 26 chapters covers theory, experimental methods and techniques and results for all types of liquids and vapours. These properties are important in all branches of pure and applied thermodynamics and this vital source is an important contribution to the subject hopefully also providing key pointers for cross-fertilization between sub-areas.

Containing the very latest information on all aspects of enthalpy and internal energy as related to fluids, this book brings all the information into one authoritative survey in this well-defined field of chemical thermodynamics.
Chapter 1 Internal Energy and Enthalpy: Introduction, Concepts and Selected Applications 1(61)
Emmerich Wilhelm
1.1 Introduction
1(2)
1.2 Thermodynamic Fundamentals
3(11)
1.3 More Thermodynamics and Selected Applications
14(1)
1.3.1 Properties of Real Fluids
14(27)
1.3.2 Property Changes of Mixing
41(10)
1.4 Concluding Remarks, Outlook and Acknowledgements
51(2)
References
53(9)
Chapter 2 Macroscopic Energy and Entropy Balances in Phase Equilibrium Studies 62(15)
J. David Raal
Deresh Ramjugernath
2.1 Introduction
62(1)
2.2 Derivation of Macroscopic Balances
63(1)
2.3 Equations
63(1)
2.3.1 Macroscopic Energy Balance
63(1)
2.3.2 Macroscopic Mechanical Energy Balance
64(1)
2.3.3 Macroscopic Entropy Balance
64(1)
2.4 Application of Macroscopic Balances
64(7)
2.4.1 Differential Ebulliometry
64(7)
2.5 Macroscopic Balances in Flow Calorimetry
71(2)
2.6 Some Useful Derivative Relations
73(3)
2.6.1 Limiting Activity Coefficients
73(1)
2.6.2 Temperature and Pressure Derivatives
74(2)
References
76(1)
Chapter 3 Enthalpy Measurements of Condensed Matter by Peltier-element-based Adiabatic Scanning Calorimetry (pASC) 77(19)
Jan Thoen
Jan Leys
Patricia Losada-Perez
Christ Glorieux
3.1 Introduction
77(1)
3.2 Operational Principle of Adiabatic Scanning Calorimetry
78(1)
3.3 Peltier-element-based Adiabatic Scanning Calorimeter (pASC)
79(3)
3.4 Comparison with DSC
82(1)
3.5 The pASC as Adiabatic Heat-step Calorimeter
83(1)
3.6 The pASC as Heat-flux DSC-type Constant-rate Calorimeter
84(1)
3.7 The pASC as Power-compensated DSC-type Constant-rate Calorimeter
84(1)
3.8 High-resolution pASC Data near the Melting Point of Gallium
85(4)
3.8.1 pASC Constant Power Scanning Results
85(1)
3.8.2 pASC Heat-step Results
86(1)
3.8.3 pASC Heat-flux and Power-compensated DSC-type Scanning Results
87(2)
3.9 High-resolution pASC Data near Phase Transitions in Lipid Vesicles
89(1)
3.10 High-resolution pASC Data for the Melting of Water
89(3)
3.11 High-resolution pASC Data for Phase Transitions in a Liquid Crystal
92(2)
References
94(2)
Chapter 4 Isothermal Titration Calorimetry 96(37)
Jose Manuel del Rio
Jean-Pierre E. Grolier
4.1 Introduction
96(6)
4.2 Thermodynamic Models of the Titration Processes in Isothermal Titration Calorimetry
102(19)
4.2.1 The Process of Titration in the Different Types of Titration Cells
102(5)
4.2.2 Run Types in Isothermal Titration Calorimetry
107(5)
4.2.3 Finite Titrations
112(4)
4.2.4 Infinitesimal Titrations
116(5)
4.3 Interaction of Solutes in Dilute Solutions by Isothermal Titration Calorimetry
121(8)
4.3.1 Study of the Single Ligand Binding Site Model
122(7)
Acknowledgements
129(1)
References
129(4)
Chapter 5 Calorimetric Determination of Enthalpies of Vaporization 133(26)
Dzmitry H. Zaitsau
Eugene Paulechka
5.1 Introduction
133(1)
5.2 Theoretical Considerations
134(2)
5.3 Calorimetric Determination of the Enthalpy of Vaporization
136(20)
5.3.1 Condensation Apparatuses
137(4)
5.3.2 Vaporization Calorimetry
141(13)
5.3.3 Differential Scanning Calorimetry
154(1)
5.3.4 Fast Scanning Calorimeter (FSC)
155(1)
5.4 Conclusions
156(1)
References
156(3)
Chapter 6 Energetic Effects in Hydrogen-bonded Liquids and Solutions 159(20)
Claudio A. Cerdeirina
Katerina Zemankova
Miguel Costas
6.1 Introduction
159(3)
6.2 Pure Associated Liquids
162(3)
6.2.1 Partitioning of the Heat Capacity of Liquids
162(1)
6.2.2 Two-state Association Model
163(2)
6.3 Nonaqueous Associated Solutions
165(3)
6.3.1 Two-state Behaviour for the Excess Heat Capacity
165(1)
6.3.2 Inert Solvents versus Proton Acceptors
166(2)
6.4 Cold Water
168(2)
6.4.1 Anomalous Thermodynamics
168(1)
6.4.2 Two-state Analysis
169(1)
6.5 Hydrophobicity
170(4)
6.5.1 Hydration Phenomena
170(1)
6.5.2 Aggregation of Small Amphiphiles
171(3)
6.6 Final Remarks
174(1)
Acknowledgements
175(1)
References
175(4)
Chapter 7 Thermodynamic Studies of Inclusion Compounds of Cyclodextrin 179(33)
Takayoshi Kimura
7.1 Introduction
179(1)
7.2 Methods of Determination
180(3)
7.2.1 Experimental
180(1)
7.2.2 Theoretical
181(2)
7.2.3 Quantum Chemical Approach
183(1)
7.3 Thermodynamic Parameters
183(19)
7.3.1 Enthalpy of Dilution
183(1)
7.3.2 Effect of Aliphatic Group Size on alpha-CD Inclusion Compounds
184(12)
7.3.3 Positional Effect of Hydroxyl Groups in Butanediol Isomers
196(3)
7.3.4 Effect of Guest Molecule Functional Groups on Inclusion into alpha-CD
199(3)
7.4 Discussion
202(4)
7.4.1 Entropy-Enthalpy Compensation
205(1)
7.5 Closing Remarks
206(1)
References
206(6)
Chapter 8 Thermodynamic Studies of Chiral Compounds 212(34)
Takayoshi Kimura
8.1 Introduction
212(2)
8.2 Material and Method
214(3)
8.2.1 Material
214(1)
8.2.2 Calorimetry
214(1)
8.2.3 Theoretical Application
215(2)
8.3 Enthalpic Behaviour
217(20)
8.3.1 Enthalpies of Mixing for Pure Enantiomers in the Liquid State
217(5)
8.3.2 Interaction of Enantiomers in the Solution State
222(15)
8.4 Theoretical Comparison
237(6)
8.4.1 Solution Theory: Intermolecular Interaction of Enantiomers
239(2)
8.4.2 Quantum Chemical Calculation
241(1)
8.4.3 Molecular Dynamics Calculation
242(1)
8.5 Closing Remarks
243(1)
References
243(3)
Chapter 9 Temperature Dependence of the Enthalpy of Alkanes and Related Phase Change Materials (PCMs) 246(23)
Jan Leys
Patricia Losada-Perez
Christ Glorieux
Jan Thoen
9.1 Introduction
246(2)
9.2 Experimental Details
248(1)
9.3 Pure Alkanes and Rotator Phases
248(8)
9.3.1 Background
248(2)
9.3.2 Phase Transitions
250(1)
9.3.3 Overview
251(1)
9.3.4 RI-Rn Transition
252(3)
9.3.5 Rv-RI Transition
255(1)
9.3.6 Other Transitions
255(1)
9.4 PCMs and Stored Heat
256(10)
9.4.1 Background
256(1)
9.4.2 PCMs
257(1)
9.4.3 Alkane Mixtures
258(1)
9.4.4 Fatty Acids
259(1)
9.4.5 Water and Water-Salt Eutectics
259(1)
9.4.6 Composites and Encapsulation
260(6)
9.5 Summary and Conclusion
266(1)
References
266(3)
Chapter 10 Enthalpy Changes on Solution of Gases in Liquids 269(30)
Emmerich Wilhelm
Rubin Battino
10.1 Introduction
269(1)
10.2 Thermodynamics
270(21)
10.2.1 Gas Solubility
270(11)
10.2.2 Calorimetry
281(10)
10.3 Selected Results
291(2)
10.4 Concluding Remarks
293(1)
References
294(5)
Chapter 11 Titration Calorimetry and Differential Scanning Calorimetry of Lipid-Protein Interactions 299(16)
Joachim Seelig
11.1 Introduction
299(1)
11.2 Isothermal Titration Calorimetry
300(8)
11.2.1 Binding of Apolipoprotein A-1 (Apo A-1) to Lipid Vesicles
300(3)
11.2.2 Langmuir Multi-site Binding Isotherm
303(1)
11.2.3 LAH4-L1-into-lipid Isothermal Titration Calorimetry
304(2)
11.2.4 Surface Partition Equilibrium and Gouy-Chapman Theory
306(2)
11.3 Differential Scanning Calorimetry of Lipid-Protein Interactions
308(5)
11.3.1 Thermal Unfolding of Apo A-1 in Solution and in Membranes
308(2)
11.3.2 The 2-state Model Applied to Apo A-1
310(1)
11.3.3 Zimm-Bragg Theory
311(1)
11.3.4 Analysis of Calorimetric Protein Unfolding Experiments
312(1)
References
313(2)
Chapter 12 Biocalorimetry: Differential Scanning Calorimetry of Protein Solutions 315(21)
Pedro L. Mateo
Francisco Conejero-Lara
Irene Luque
Javier Ruiz-Sanz
Jose C. Martinez
Ana I. Azuaga
Eva S. Cobos
12.1 Introduction
315(3)
12.2 The Two-state Unfolding Model for Monomeric Proteins
318(3)
12.3 The Three-state and Multi-state Unfolding Models for Monomeric Proteins
321(1)
12.4 The Study of Protein-ligand and Protein-Protein Interactions by DSC
322(3)
12.5 DSC Analysis of Protein Oligomers and Aggregates
325(3)
12.6 Non-equilibrium Transitions
328(3)
12.7 Conclusions
331(1)
References
331(5)
Chapter 13 Biocalorimetry of Plants, Insects and Soil Microorganisms 336(28)
Lee D. Hansen
Amaia Nogales
Birgit Arnholdt-Schmitt
Lisa G. Neven
Nieves Barros
13.1 Introduction
336(4)
13.2 Biocalorimetry of Plants
340(5)
13.3 Biocalorimetry of Insects
345(8)
13.3.1 Cold Hardiness
350(1)
13.3.2 Whole Body Supercooling Points
350(1)
13.3.3 Assessment of Pesticide Activity
351(1)
13.3.4 Development of Postharvest Quarantine Treatments
351(2)
13.4 Biocalorimetry of Soil Organic Matter
353(5)
References
358(6)
Chapter 14 Temperature Dependence of the Enthalpy Near Critical and Tricritical Second-order and Weakly First-order Phase Transitions 364(16)
Patricia Losada-Perez
Jan Leys
George Cordoyiannis
Christ Glorieux
Jan Thoen
14.1 Introduction
364(2)
14.2 Temperature Dependence of the Enthalpy at the Liquid-Liquid Critical Point
366(3)
14.3 Enthalpy Temperature Dependence at Weakly First-order and Tricritical Second-order Phase Transitions
369(1)
14.3.1 Enthalpy Temperature Dependence at the Weakly First-order Isotropic to Nematic Transition
370(1)
14.3.2 Enthalpy Temperature Dependence at the Nematic to Smectic A Phase Transition
371(7)
References
378(2)
Chapter 15 Yang-Yang Critical Anomaly 380(31)
Ilmutdin M. Abdulagatov
Joseph W. Magee
Nikolai G. Polikhronidi
Rabiyat G. Batyrova
15.1 Background
380(4)
15.2 Isochoric Heat Capacity and Liquid-Gas Asymmetry
384(8)
15.3 Yang-Yang Critical Anomaly Strength and Distinct Two-phase Isochoric Heat Capacity Contributions near the Liquid-Gas Critical Point
392(5)
15.4 New Method for Evaluation of the Yang-Yang Anomaly Parameter from Direct Measurements of Two-phase Isochoric Heat Capacity and Saturated Liquid and Vapor Density
397(8)
15.5 Conclusions
405(1)
Acknowledgements
406(1)
References
406(5)
Chapter 16 Internal Pressure and Internal Energy of Saturated and Compressed Phases 411(36)
Ilmutdin M. Abdulagatov
Joseph W. Magee
Nikolai G. Polikhronidi
Rabiyat G. Batyrova
16.1 Background
411(1)
16.2 Thermodynamic and Statistical Mechanical Definition of the Internal Pressure
412(2)
16.3 Internal Pressure and Intermolecular Forces
414(4)
16.4 Methods for Internal Pressure Measurements
418(5)
16.5 One-phase Isochoric Heat Capacity and Internal Pressure
423(4)
16.6 Two-phase Isochoric Heat Capacity and Internal Pressure
427(7)
16.7 Internal Pressure as a Function of External Pressure, Temperature or Density from a Reference Equation of State
434(4)
16.8 Locus of Zero Internal Pressure
438(1)
16.9 Simon's Melting Curve Equation Parameters and Internal Pressure
439(3)
Acknowledgements
442(1)
References
442(5)
Chapter 17 Solubility Parameters: A Brief Review 447(30)
Emmerich Wilhelm
17.1 Introduction and Development of Concept
447(9)
17.2 Expanded Regular Solution Theory
456(3)
17.3 Effect of Temperature and Pressure on Solubility Parameters
459(4)
17.4 Empiricism and Further Developments, and Concluding Remarks
463(7)
References
470(7)
Chapter 18 Internal Pressure of Liquids: A Review 477(28)
Yizhak Marcus
18.1 Introduction
477(2)
18.2 Internal Pressures of Neat Liquids
479(14)
18.2.1 Liquefied Gases
479(1)
18.2.2 Liquid Metallic Elements
480(1)
18.2.3 Molecular Liquids at Ambient Conditions
480(1)
18.2.4 Liquid Polymers
481(1)
18.2.5 Room Temperature Ionic Liquids (RTILs)
481(2)
18.2.6 Molten Salts
483(2)
18.2.7 Internal Pressure Dependence on the Temperature and Pressure
485(6)
18.2.8 Correlations with Other Quantities
491(1)
18.2.9 Internal Pressure of Solvents and Reactions in Them
492(1)
18.3 Internal Pressure of Liquid Mixtures and Solutions
493(7)
18.3.1 Liquid Mixtures
493(2)
18.3.2 Dilute Solutions of Non-electrolytes
495(2)
18.3.3 Dilute Solutions of Electrolytes
497(3)
18.4 Discussion and Conclusions
500(1)
References
501(4)
Chapter 19 Excess Enthalpies for Binary Systems Containing Ionic Liquids 505(16)
Jacobo Troncoso
19.1 Introduction
505(1)
19.2 Experimental Methodologies
506(1)
19.3 Results and Discussion
506(12)
19.3.1 Aqueous Systems
507(4)
19.3.2 Alcohol Systems
511(5)
19.3.3 Other Systems
516(2)
19.4 Conclusions
518(1)
References
518(3)
Chapter 20 Electrolyte Solutions: Standard State Partial Molar Enthalpies of Aqueous Solution up to High Temperatures 521(22)
Essmaiil Djamali
Walter G. Chapman
20.1 Introduction
521(2)
20.2 Experimental Methods
523(15)
20.2.1 The Integral Heat Method
524(1)
20.2.2 Treatment of Data
525(9)
20.2.3 Differential Heat Capacity Calorimeters
534(3)
20.2.4 Other Methods
537(1)
20.3 Conclusion
538(1)
References
538(5)
Chapter 21 Correlation and Prediction of Excess Molar Enthalpies Using DISQUAC 543(26)
Juan Antonio Gonzalez
Isaias Garcia de la Fuente
Jose Carlos Cobos
21.1 Introduction
543(2)
21.2 Main Hypotheses and Equations
545(3)
21.2.1 Hypotheses
545(1)
21.2.2 Equations
546(2)
21.3 Fitting the Interaction Parameters
548(1)
21.4 Interaction Parameters and Molecular Structure
549(2)
21.5 Selected Data
551(1)
21.6 Results
551(11)
21.6.1 Group I
552(2)
21.6.2 Group II
554(2)
21.6.3 Group III
556(1)
21.6.4 Group IV
557(3)
21.6.5 Group V
560(2)
21.6.6 Ternary Mixtures
562(1)
21.7 Concluding Remarks
562(1)
References
563(6)
Chapter 22 Molecular Thermodynamics of Solutions 569(21)
Ioannis Tsivintzelis
Costas Panayiotou
22.1 Introduction
569(1)
22.2 The Non-random Hydrogen-bonding Model
570(6)
22.2.1 The Essentials of the Model
570(3)
22.2.2 The Hydrogen Bonding Contribution
573(1)
22.2.3 The Dimerization of Acids
574(1)
22.2.4 Intra-molecular Hydrogen Bonding
575(1)
22.3 Applications
576(11)
22.3.1 Systems with Carboxylic Acids
577(8)
22.3.2 Systems with Intra-molecular Association
585(2)
22.4 Conclusions
587(1)
References
587(3)
Chapter 23 Measurement of Heat Capacity and Phase Transition Enthalpy for Condensed Materials by Precision Adiabatic Calorimetry 590(21)
Z.C. Tan
Q. Shi
Z.D. Nan
Y.Y. Di
23.1 Introduction
590(2)
23.2 A New Adiabatic Calorimeter
592(9)
23.2.1 Sample Cell and Adiabatic Calorimetric Cryostat
593(1)
23.2.2 Computer, Data Collection Unit and Software
594(5)
23.2.3 Adiabatic Control Module
599(1)
23.2.4 The Module of Setting and Revision of Operation Conditions and Data Displaying
599(1)
23.2.5 Calibration and Discussion of Results
599(2)
23.3 Application of the Adiabatic Calorimeter in Measurement of Heat Capacity and Phase Transition Enthalpy of Ionic Liquids
601(6)
23.3.1 Material, Adiabatic Calorimetry and TG Analysis
601(1)
23.3.2 Heat Capacity
602(3)
23.3.3 The Temperature, Enthalpy and Entropy of Solid-Liquid Phase Transition
605(1)
23.3.4 Thermodynamic Functions of the Compound
606(1)
23.3.5 The Results of TG-DTG Analysis
606(1)
23.4 Conclusions
607(1)
Acknowledgements
608(1)
References
608(3)
Subject Index 611
National Institute of Standards (NIST), USA