Muutke küpsiste eelistusi

E-raamat: Environmental Radioactivity and Emergency Preparedness

(Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Sweden), (Medical Physics, Department of Translational Medicine, Lund University, Sweden)
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Radioactive sources such as nuclear power installations can pose a great threat to both humans and our environment. How do we measure, model and regulate such threats? Environmental Radioactivity and Emergency Preparedness addresses these topical questions and aims to plug the gap in the lack of comprehensive literature in this field.

The book explores how to deal with the threats posed by different radiological sources, including those that are lost or hidden, and the issues posed by the use of such sources. It presents measurement methods and approaches to model and quantify the extent of threat, and also presents strategies for emergency preparedness, such as strategies for first-responders and radiological triage in case an accident should happen.

Containing the latest recommendations and procedures from bodies such as the IAEA, this book is an essential reference for both students and academicians studying radiation safety, as well as for radiation protection experts in public bodies or in the industry.

Arvustused

"This new book from Isaksson and Raaf will be very useful for students and professionals engaged in the radiation protection of humans and the environment. It covers all of the fundamental theoretical aspects of radiation physics and radiation biology, but focuses primarily on the fields practical aspects, including radiation detection, sample preparation, and dose assessment. The book also discusses current global concerns over radiation protection, such as modelling the transfer of radionuclides between large scale environments (like the oceans or soils) to small scale environments (like plants and animals). After starting with a recall of facts or basic principles, each chapter introduces the relevant theory in great detail before providing example calculations and a wide variety of exercises for the reader to utilise. Notably, the last chapter tackles emergency preparedness, discussing emergency scenarios and the remedial actions and dosimetry methods to be applied to large scale accidents. This topic is usually not covered by other books in the field - instead reserved to be discussed in restricted reports and therefore makes this book unique. Risk communication is another very important issue that is explored, which will be of interest to decision makers and also first responders who might need to deal with public concerns.

Focusing on current concerns whilst still tackling the fundamentals of the field, Environmental Radioactivity and Emergency Preparedness is a modern treatise of radiation protection and will be useful to many!" David Broggio, Institut de Radioprotection et de Sûreté Nucléaire, France

"One particular challenge of nuclear and radiological technologies is preparing for failure, misuse, and disaster, and emergency preparedness is essential in limiting the impact of such events on our populations and environment. Emergency response teams, specifically experts in radiation protection, medical phy

Chapter 1 Sources of Radiation 1(78)
1.1 Naturally Occurring Radiation
2(16)
1.1.1 Cosmic Radiation
2(4)
1.1.2 Cosmogenic Radionuclides
6(4)
1.1.2.1 Tritium
7(1)
1.1.2.2 Beryllium-7
7(1)
1.1.2.3 Carbon-14
8(2)
1.1.2.4 Sodium-22
10(1)
1.1.3 Primordial Radionuclides
10(5)
1.1.3.1 Potassium
12(1)
1.1.3.2 Uranium
12(1)
1.1.3.3 Thorium
13(1)
1.1.3.4 Radium
13(1)
1.1.3.5 Radon
14(1)
1.1.4 Series Decay and Equilibria
15(3)
1.2 Technologically Enhanced Naturally Occurring Radioactive Material (Norm And Tenorm)
18(12)
1.2.1 Radon and Radon Exposure Enhanced by Man
18(4)
1.2.1.1 Potential Alpha Energy
18(3)
1.2.1.2 Radon in the Indoor Environment
21(1)
1.2.2 Sources Generated by Industrial and Technological Processes
22(8)
1.2.2.1 Radioactivity Associated with Fossil Fuels
22(3)
1.2.2.2 Radioactivity Associated with the Production and Use of Minerals
25(1)
1.2.2.3 Phosphate Ore and Phosphate Fertilizers
26(1)
1.2.2.4 Manufacturing of Equipment and Household Goods
27(1)
1.2.2.5 Water Treatment and the Provision of Running Water
28(1)
1.2.2.6 Exemption and Clearance
29(1)
1.3 Anthropogenic Radiation
30(43)
1.3.1 The Nuclear Industry
30(20)
1.3.1.1 The Nuclear Fission Process
30(4)
1.3.1.2 Controlled Nuclear Fission
34(4)
1.3.1.3 Nuclear Reactors
38(6)
1.3.1.4 Production of Radionuclides in a Reactor
44(6)
1.3.2 Nuclear Weapons
50(14)
1.3.2.1 Nuclear Weapons Tests
50(4)
1.3.2.2 Effects of Nuclear Weapons
54(7)
1.3.2.3 Nuclear Fission Bombs
61(1)
1.3.2.4 Thermonuclear Weapons
62(2)
1.3.3 Radioisotopes Used in Medicine
64(5)
1.3.4 Radiation Sources in Industry and Research
69(4)
1.4 References
73(3)
1.5 Exercises
76(2)
1.6 Further Reading
78(1)
Chapter 2 Radiation Biology and Radiation Dosimetry 79(82)
2.1 Interaction Of Radiation With Matter
80(12)
2.1.1 The Interaction of Charged Particles with Matter
80(5)
2.1.2 The Interaction of Uncharged Radiation with Matter
85(7)
2.2 Radiation Dosimetry
92(5)
2.2.1 Absorbed Dose and Kerma
92(2)
2.2.2 Charged Particle Equilibrium and Cavity Theory
94(3)
2.3 Basic Radiation Biology
97(21)
2.3.1 Effects on Cells and Tissues
97(17)
2.3.1.1 Animal Cells
97(3)
2.3.1.2 DNA Lesions and Repair Mechanisms
100(4)
2.3.1.3 Radiosensitivity of Cells
104(3)
2.3.1.4 Effects on Tissue
107(4)
2.3.1.5 Acute Radiation Syndrome, ARS
111(3)
2.3.2 Stochastic Effects
114(12)
2.3.2.1 Carcinogenesis
114(3)
2.3.2.2 Hereditary Effects
117(1)
2.4 Dosimetric Quantities Used In Risk Estimation
118(5)
2.5 Operational Quantities
123(3)
2.6 Fluence Rate From Various Source Geometries
126(9)
2.6.1 Volume Sources
126(3)
2.6.2 Area Sources
129(2)
2.6.3 Spherical Sources
131(1)
2.6.4 Line Sources
132(3)
2.7 Absorbed Dose And Kerma From External Radiation Sources
135(7)
2.7.1 Calculations of Absorbed Dose and Kerma
135(4)
2.7.2 Build-Up
139(3)
2.8 Absorbed Dose From Internal Radiation Sources
142(14)
2.8.1 Modelling the Behaviour of Radionuclides in the Human Body
142(10)
2.8.1.1 The Human Respiratory Tract
145(3)
2.8.1.2 The Human Alimentary Tract
148(2)
2.8.1.3 Biokinetic, and Metabolic Models
150(2)
2.8.2 Dose Calculations for Internal Exposure
152(4)
2.9 References
156(3)
2.10 Exercises
159(1)
2.11 Further Reading
160(1)
Chapter 3 Environmental Exposure Pathways and Models 161(122)
3.1 Compartment Models For Environmental Modelling
162(13)
3.1.1 The Basics of Compartment Models
162(10)
3.1.2 Variance and Sensitivity of a Compartment Model
172(3)
3.2 The Atmosphere
175(44)
3.2.1 Composition and Circulation Patterns
175(6)
3.2.2 Atmospheric Stability
181(7)
3.2.3 The Gaussian Plume Diffusion Model
188(12)
3.2.4 Deposition
200(10)
3.2.4.1 Dry Deposition
201(4)
3.2.4.2 Wet Deposition
205(3)
3.2.4.3 Resuspension
208(2)
3.2.5 Dose Calculations from Atmospheric Dispersion
210(4)
3.2.6 Past Exposure Events and Modelling of Deposition
214(5)
3.3 The Oceans
219(20)
3.3.1 Composition and Circulation Patterns
219(6)
3.3.2 Deposition and Transport of Radionuclides
225(9)
3.3.3 Modelling Radionuclide Transport in the Oceans and Transfer to Biota
234(5)
3.4 Freshwater Systems
239(6)
3.4.1 Lakes
239(5)
3.4.1.1 Classification of Lakes
239(1)
3.4.1.2 Transport Processes and Uptake in Biota
240(2)
3.4.1.3 Modelling of Lake Systems
242(2)
3.4.2 Rivers and Estuaries
244(1)
3.4.2.1 Rivers
244(1)
3.4.2.2 Estuaries
245(1)
3.5 The Terrestrial Environment
245(28)
3.5.1 Soil Composition and Properties
245(7)
3.5.1.1 Soil Classification
247(1)
3.5.1.2 Chemical and Physical Properties of Soils
248(4)
3.5.2 Transport of Radionuclides in the Ground
252(3)
3.5.3 Radionuclide Transfer in Agricultural Ecosystems
255(10)
3.5.3.1 Transfer to Plants
255(7)
3.5.3.2 Transfer to Animals and Animal Products
262(3)
3.5.4 Radionuclide Transfer in Natural and Semi-Natural Ecosystems
265(4)
3.5.4.1 Transfer to Vegetation and Forest Products
265(1)
3.5.4.2 Transfer to Animals and Animal Products
266(3)
3.5.5 Radionuclide Transfer in Urban Environments
269(4)
3.6 References
273(7)
3.7 Exercises
280(1)
3.8 Further Reading
281(2)
Chapter 4 Radiometry 283(96)
4.1 Basic Statistical Principles Of Radiometry
284(5)
4.1.1 Statistical Models
285(2)
4.1.2 Uncertainties in Radiometry Measurements
287(1)
4.1.3 Background Subtraction
288(1)
4.2 Various Types Of Detectors
289(24)
4.2.1 General Features of a Radiation Detector
289(1)
4.2.2 Gaseous Detectors for Ionizing Radiation
289(4)
4.2.2.1 Ionization Chambers
292(1)
4.2.2.2 Proportional Counters
292(1)
4.2.2.3 GM Counters
292(1)
4.2.2.4 Role of Quenching Gas
293(1)
4.2.3 Solid-State Detectors for Ionizing Radiation
293(6)
4.2.4 Luminescent Detectors
299(9)
4.2.4.1 Organic Luminescent Detectors
299(3)
4.2.4.2 Inorganic Luminescent Detectors
302(3)
4.2.4.3 Integrating Luminescent Detectors
305(3)
4.2.5 Chemical Detectors
308(2)
4.2.6 Mass Spectrometry
310(3)
4.3 Basic Characteristics Of A Radiation Detector
313(11)
4.3.1 Spatial Resolution
314(2)
4.3.2 Energy Resolution
316(1)
4.3.3 Time Resolution
317(1)
4.3.4 Sensitivity and Counting Efficiency
318(1)
4.3.5 Energy Dependence
319(1)
4.3.6 Signal-to-Noise or Signal-to-Background Ratio
320(1)
4.3.7 Response to Various Types of Radiation Particles
321(1)
4.3.8 Tissue Equivalence
321(2)
4.3.9 Robustness
323(1)
4.3.10 Ageing
324(1)
4.4 Electronic Processing Of Detector Pulses And Signals
324(9)
4.4.1 General Introduction
324(1)
4.4.2 Preamplific at ion
325(1)
4.4.3 Noise Propagation and Pulse Shaping
325(2)
4.4.4 Pole-Zero and Baseline Restoration
327(1)
4.4.5 High-Voltage Bias Supplies
328(1)
4.4.6 Photomultipliers
328(2)
4.4.7 Analogue-to-Digital Converters and Multichannel Analysers
330(2)
4.4.8 Digital Signal Processing
332(1)
4.5 Spectrometry Of Charged Particle Radiation
333(12)
4.5.1 General Introduction
333(1)
4.5.2 a Spectrometry Using Solid Semiconductor Detectors
334(6)
4.5.3 Charged Particle Spectrometry and Total Beta Counting Using Liquid Scintillators
340(5)
4.6 Gamma-Ray Spectrometry
345(24)
4.6.1 Interactions between Uncharged Particles and the Detector and Surrounding Materials
345(9)
4.6.1.1 Complete Absorption of the Incident Gamma Energy
346(1)
4.6.1.2 Incomplete Absorption of the Incident Gamma Energy
346(2)
4.6.1.3 Incomplete Energy Deposition of the Incident Photons
348(1)
4.6.1.4 Backscattering of Photons Interacting with Surrounding Materials
349(1)
4.6.1.5 Interaction of Background Radiation in the Detector
349(1)
4.6.1.6 Coincidences and Other Artefacts
349(5)
4.6.2 Energy Resolution of Gamma-Ray Spectrometers
354(2)
4.6.3 Time Resolution of Gamma-Ray Spectrometers
356(1)
4.6.4 Detection Efficiency and Detection Limits of Gamma-Ray Spectrometers
357(2)
4.6.5 Calibration and Quantitative Assessment in Gamma-Ray Spectrometry
359(3)
4.6.6 Analysis of Gamma Pulse Height Distributions
362(1)
4.6.7 Detection Limits
363(6)
4.7 Neutron Detectors
369(5)
4.7.1 Neutron Interactions in Matter
369(2)
4.7.2 Design of Neutron Detectors
371(2)
4.7.3 Application of Neutron Detection in Radiation Protection
373(1)
4.8 References
374(3)
4.9 Exercises
377(2)
Chapter 5 Sampling and Sample Preparation for Radiometry 379(42)
5.1 Principles Of Sampling For Radiometry
380(5)
5.1.1 General Aspects of Radiological Sampling
380(3)
5.1.2 Sampling Theory
383(2)
5.2 Sampling For Radionuclide Assessment
385(19)
5.2.1 Air Sampling
385(4)
5.2.2 Precipitation and Water Sampling
389(1)
5.2.3 Soil Sampling
389(3)
5.2.4 Pasture Grass
392(1)
5.2.5 Foodstuffs
392(2)
5.2.6 Biological Human Samples
394(2)
5.2.7 Bioindicators
396(1)
5.2.8 Waste Water and Sludge
397(1)
5.2.9 Sediment Samples
398(2)
5.2.10 Preconcentration of Samples
400(2)
5.2.11 General Factors Regarding Environmental Samples
402(2)
5.3 Radiochemistry
404(14)
5.3.1 Sample Preparation for Radiometry
404(1)
5.3.2 Preconcentration and Tracer Addition
404(2)
5.3.3 Sample Digestion
406(3)
5.3.4 Radiochemical Separation
409(3)
5.3.4.1 Precipitation
409(1)
5.3.4.2 Solid Phase Extraction Using Ion-Exchange Resins
410(2)
5.3.4.3 Solvent Extraction
412(1)
5.3.4.4 Combined Methods of Extraction
412(1)
5.3.5 Source Preparation for External cr-Particle Spectrometry
412(1)
5.3.6 Sample Preparation for Liquid Scintillation Counting
413(2)
5.3.6.1 Liquid Scintillator Materials
414(1)
5.3.6.2 Mixing Various Samples with Liquid Scintillator Materials
414(1)
5.3.7 Concerns Regarding Radiochemistry
415(3)
5.4 References
418(1)
5.5 Exercises
419(1)
5.6 Further Reading
420(1)
Chapter 6 Nuclear and Radiological Safety 421(38)
6.1 Risk Concepts And Risk Communication
421(6)
6.1.1 Risk Concepts
421(2)
6.1.2 Risk Communication
423(4)
6.2 Radiation Protection
427(7)
6.2.1 The ICRP Recommendations
427(3)
6.2.2 Basic Safety Standards
430(1)
6.2.3 Radiation Risk
431(3)
6.3 The Nuclear Fuel Cycle
434(18)
6.3.1 Mining and Milling
435(2)
6.3.2 Enrichment and Fuel Fabrication
437(3)
6.3.3 Operation of Nuclear Power Plants
440(4)
6.3.3.1 Defence in Depth
440(1)
6.3.3.2 Safety Assessment
441(3)
6.3.4 Reprocessing
444(4)
6.3.5 Waste Management and Storage
448(1)
6.3.6 Public and Occupational Exposure
449(3)
6.4 Protection Of The Environment
452(3)
6.5 References
455(3)
6.6 Exercises
458(1)
6.7 Further Reading
458(1)
Chapter 7 Emergency Preparedness 459(126)
7.1 Exposure Scenarios
461(26)
7.1.1 Radiological Threats
461(9)
7.1.1.1 General Aspects of Radiological Accidents
461(4)
7.1.1.2 Hazardous Radioactive Sources
465(4)
7.1.1.3 Malevolent Use of Radioactive Substances
469(1)
7.1.2 Military and Antagonistic Nuclear Threats
470(7)
7.1.2.1 Nuclear Terrorism
470(1)
7.1.2.2 Nuclear Weapons Testing
471(2)
7.1.2.3 Nuclear Detonation in Warfare
473(4)
7.1.3 Civil Nuclear Threats
477(10)
7.2 Remedial Actions In Radiological And Nuclear Emergencies
487(40)
7.2.1 Emergency Preparedness
487(21)
7.2.1.1 Strategies for Remedial Action
487(8)
7.2.1.2 Emergency Planning and Organization
495(4)
7.2.1.3 Small-Scale Events
499(4)
7.2.1.4 Large-Scale Events
503(5)
7.2.2 Remedial Actions
508(18)
7.2.2.1 Countermeasures and Intervention Levels
508(2)
7.2.2.2 First Responders at a Local Accident Site
510(2)
7.2.2.3 Radiometry by On-Site Radiation Protection Experts
512(7)
7.2.2.4 Regional or National Incident Sites
519(4)
7.2.2.5 Decontamination
523(3)
7.2.3 Remedial Strategies in RN Emergencies
526(1)
7.3 Measurement Methods For Emergency Preparedness
527(36)
7.3.1 Radiometry Methods for National Emergency Preparedness
527(1)
7.3.2 Calculation Tools
528(5)
7.3.3 Retrospective Dosimetry
533(2)
7.3.4 Retrospective Dosimetry: Samples Taken from Tissues
535(10)
7.3.4.1 Electron Paramagnetic Resonance
535(3)
7.3.4.2 Cytogenetic Dosimetry: Chromosome Aberrations in Lymphocytes and Other Somatic Cells
538(3)
7.3.4.3 In Vivo Body Burden Measurements
541(2)
7.3.4.4 Excretion Measurements for Internal Dosimetry
543(2)
7.3.5 Retrospective Dosimetry Using Environmental Radiometry
545(6)
7.3.5.1 Thermostimulated and Optical Luminescence
545(3)
7.3.5.2 Mass Spectrometry
548(1)
7.3.5.3 Retrospective Dosimetry Using in Situ Gamma Radiometry
548(2)
7.3.5.4 Dose Reconstruction Using Radionuclide Concentra- tion Data in Foodstuffs
550(1)
7.3.6 In Situ Radiometry
551(6)
7.3.6.1 Stationary in Situ Gamma-Ray Spectrometry
551(3)
7.3.6.2 Mobile Gamma Radiometry
554(3)
7.3.7 Networks of Radiometry Systems for Monitoring
557(6)
7.4 Treatment, Monitoring, And Triage In Patient Care
563(22)
7.4.1 The Medical Response to an RN Emergency
563(1)
7.4.2 Monitoring at the Accident Site
564(12)
7.4.2.1 Initial Emergency Response at an RN Accident Site
564(2)
7.4.2.2 Monitoring of Casualties and Personnel
566(1)
7.4.2.3 Decontamination of Casualties and Personnel
567(2)
7.4.2.4 Management and Triage of Patients in Cases of Mass Casualties
569(1)
7.4.3 Monitoring at Hospitals
570(6)
7.5 References
576(6)
7.6 Exercises
582(2)
7.7 Further Reading
584(1)
Index 585
Mats Isaksson is a Professor in the Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden.

Christopher L Rääf, is a Professor of Medical Physics in the Department of Translational Medicine, Lund university, Malmö, Sweden.