Muutke küpsiste eelistusi

E-raamat: Equidistribution Of Dynamical Systems: Time-quantitative Second Law

(Rutgers Univ, Usa)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 122,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We know very little about the time-evolution of many-particle dynamical systems, the subject of our book. Even the 3-body problem has no explicit solution (we cannot solve the corresponding system of differential equations, and computer simulation indicates hopelessly chaotic behaviour). For example, what can we say about the typical time evolution of a large system starting from a stage far from equilibrium? What happens in a realistic time scale? The reader's first reaction is probably: What about thefamous Second Law (of thermodynamics)? Unfortunately, there are plenty of notorious mathematical problems surrounding the Second Law. (1) How to rigorously define entropy? How to convert the well known intuitions (like "disorder" and "energy spreading") into precise mathematical definitions? (2) How to express the Second Law in forms of a rigorous mathematical theorem? (3) The Second Law is a "soft" qualitative statement about entropy increase, but does not say anything about the necessary time to reach equilibrium. The object of this book is to answer questions (1)-(2)-(3). We rigorously prove a Time-Quantitative Second Law that works on a realistic time scale. As a by product, we clarify the Loschmidt-paradox and the related reversibility/irreversibility paradox"--
Preface vii
Chapter 1 Formulating a Time-Quantitative Second Law for Large Systems
1(118)
1 Defining our implicit interaction models; Unrealistic versus realistic time scale
1(17)
2 The first step is the hardest: How to define a quantitative form of microscopic equilibrium in large systems?
18(26)
3 First surprise: Shockingly fast approach to micro-equilibrium in the Gaussian case
44(15)
4 Second surprise: Shockingly slow approach to micro-equilibrium in the "photon-like" constant speed case
59(14)
5 Estimating a crucial "variance", and more on starting from Big Bang
73(21)
6 Micro-Entropy and a time-quantitative Second Law: A preview
94(25)
Chapter 2 Starting the Proofs: Applying Fourier Analysis
119(50)
7 Proof of Theorem 3.1
119(11)
8 Proving Theorems 4.1-2 and Lemma 5.1
130(7)
9 Proof of Theorem 5.1
137(20)
10 Proving Theorem 3.2 and the Quick-Jump-Up Phenomenon
157(12)
Chapter 3 Proving Our Time-Quantitative Second Law
169(94)
11 First step: Relative disparity -- a Boltzmann entropy like quantity
169(13)
12 Does the disparity decrease?
182(10)
13 Proving a Second Law (I): First kind and second kind
192(15)
14 Proving a Second Law (II): Second kind
207(14)
15 Illustrations of the Second Law (I): Third kind
221(12)
16 Illustrations of the Second Law (II): First kind and second kind
233(11)
17 Illustrations of the Second Law (III): More on the second kind, and the Paradoxes
244(19)
Chapter 4 More on the Second Law
263(72)
18 The case of general speed distribution (I)
263(12)
19 The case of general speed distribution (II): A general Second Law
275(13)
20 Returning to the torus-via-unfolding model
288(7)
21 Billiards in other shapes
295(4)
22 Equivalent dynamical systems (I)
299(8)
23 Equivalent dynamical systems (II)
307(6)
24 Extensions of the Second Law
313(22)
Chapter 5 Long-Term Stability of Equilibrium
335(60)
25 Simultaneous box equilibrium
335(14)
26 Starting the proof of Theorem 25.1
349(6)
27 Proof of Theorem 26.1 (I)
355(9)
28 Proof of Theorem 26.1 (II)
364(13)
29 Stability beyond the Gaussian case (I)
377(8)
30 Stability beyond the Gaussian case (II)
385(10)
Appendix 1 The Second Law in Physics 395(12)
Appendix 2 Proving Lemmas 1.1--2 and Beyond 407(10)
References 417(4)
Index 421