Muutke küpsiste eelistusi

E-raamat: Equivariant Cohomology of Configuration Spaces Mod 2: The State of the Art

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2282
  • Ilmumisaeg: 01-Jan-2022
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030841386
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2282
  • Ilmumisaeg: 01-Jan-2022
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030841386
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book gives a brief treatment of the equivariant cohomology of the classical configuration space F(^d,n) from its beginnings to recent developments. This subject has been studied intensively, starting with the classical papers of Artin (1925/1947) on the theory of braids, and progressing through the work of Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol'd (1969). The focus of this book is on the mod 2 equivariant cohomology algebras of F(^d,n), whose additive structure was described by Cohen (1976) and whose algebra structure was studied in an influential paper by Hung (1990). A detailed new proof of Hung's main theorem is given, however it is shown that some of the arguments given by him on the way to his result are incorrect, as are some of the intermediate results in his paper.This invalidates a paper by three of the authors, Blagojevi, Lück and Ziegler (2016), who used a claimed intermediate result in order to derive lower bounds for the existence of k-regular and -skew embeddings. Using the new proof of Hung's main theorem, new lower bounds for the existence of highly regular embeddings are obtained: Some of them agree with the previously claimed bounds, some are weaker.

Assuming only a standard graduate background in algebraic topology, this book carefully guides the reader on the way into the subject. It is aimed at graduate students and researchers interested in the development of algebraic topology in its applications in geometry.

Arvustused

The book is well written. The book will be important for those who study the cohomology rings of configuration spaces. (Shintarô Kuroki, Mathematical Reviews, November, 2022)

1 Snapshots from the History
1(22)
1.1 The Braid Group
2(1)
1.2 The Fundamental Sequence of Fibrations
3(2)
1.3 Artin's Presentation of Bn and π1(F(R2, n))
5(2)
1.4 The Cohomology Ring H*(F(R2, n); Z)
7(2)
1.5 The Cohomology of the Braid Group Bn
9(1)
1.6 The Cohomology Ring H*(Bn; F2)
10(2)
1.7 Cohomology of Braid Spaces
12(4)
1.8 Homology of Unordered Configuration Spaces
16(7)
Part I Mod 2 Cohomology of Configuration Spaces
2 The Ptolemaic Epicycles Embedding
23(10)
3 The Equivariant Cohomology of Pe(Rd, 2m)
33(30)
3.1 Small Values of m
33(1)
3.2 The Case m = 2
34(5)
3.3 Cohomology of (X × X) ×z2 Sd-1 and (X × X) × Z2 EZ2
39(10)
3.4 The Induction Step
49(3)
3.5 The Restriction Homomorphisms -- Three Aspects
52(11)
3.5.1 A Restriction Homomorphism and the Mui Invariants
52(2)
3.5.2 A Restriction Homomorphism and the Dickson Invariants
54(4)
3.5.3 Two Lemmas
58(5)
4 Hu'ng's Injectivily Theorem
63(32)
4.1 Critical Points in Hu'ng's Proof of His Injectivity Theorem
64(11)
4.2 Proof of the Injectivily Theorem
75(12)
4.2.1 Prerequisites
77(7)
4.2.2 Proof of the Dual Epimorphism Theorem
84(3)
4.3 An Unexpected Corollary
87(8)
4.3.1 Motivation
87(2)
4.3.2 Corollary
89(6)
Part II Applications to the (Non-)Existence of Regular and Skew Embeddings
5 On Highly Regular Embeddings: Revised
95(42)
5.1 κ-Regular Embeddings
96(17)
5.2 L-Skew Embeddings
113(15)
5.3 κ-Regular-L-Skew Embeddings
128(4)
5.4 Complex Highly Regular Embeddings
132(5)
6 More Bounds for Highly Regular Embeddings
137(26)
6.1 Examples of S2m-Representations and Associated Vector Bundles
137(3)
6.1.1 Examples of S2m-Representations
138(1)
6.1.2 Associated Vector Bundles
138(2)
6.2 The Key Lemma and its Consequences
140(8)
6.3 Additional Bounds for the Existence of Highly Regular Embeddings
148(9)
6.4 Additional Bounds for the Existence of Complex Highly Regular Embeddings
157(6)
Part III Technical Tools
7 Operads
163(10)
7.1 Definition and Basic Example
163(3)
7.2 O-Space
166(1)
7.3 Little Cubes Operad
167(2)
7.4 Cd-Spaces, An Example
169(1)
7.5 Cd-Spaces, a Free Cd-Space Over X
170(1)
7.6 Araki--Kudo--Dyer--Lashof Homology Operations
171(2)
8 The Dickson Algebra
173(6)
8.1 Rings of Invariants
173(3)
8.2 The Dickson Invariants as Characteristic Classes
176(3)
9 The Stiefel--Whitney Classes of the Wreath Square of a Vector Bundle
179(8)
9.1 The Wreath Square and the (d -- 1)-Partial Wreath Square of a Vector Bundle
179(2)
9.2 Cohomology of B(S2ξ) = S2B(ξ)
181(2)
9.3 The Total Stiefel--Whitney Class of the Wreath Square of a Vector Bundle
183(4)
10 Miscellaneous Calculations
187(14)
10.1 Detecting Group Cohomology
187(1)
10.2 The Image of a Restriction Homomorphism
188(4)
10.3 Weyl Groups of an Elementary Abelian Group
192(2)
10.4 Cohomology of the Real Projective Space with Local Coefficients
194(3)
10.5 Homology of the Real Projective Space with Local Coefficients
197(4)
References 201(6)
Index 207