Muutke küpsiste eelistusi

E-raamat: ESD: Failure Mechanisms and Models

(IEEE Fellow, Vermont, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jul-2009
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470747261
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 140,73 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jul-2009
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470747261
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Electrostatic discharge (ESD) failure mechanisms continue to impact semiconductor components and systems as technologies scale from micro- to nano-electronics.

This book studies electrical overstress, ESD, and latchup from a failure analysis and case-study approach. It provides a clear insight into the physics of failure from a generalist perspective, followed by investigation of failure mechanisms in specific technologies, circuits, and systems. The book is unique in covering both the failure mechanism and the practical solutions to fix the problem from either a technology or circuit methodology.

Look inside for extensive coverage on:

  • failure analysis tools, EOS and ESD failure sources and failure models of semiconductor technology, and how to use failure analysis to design more robust semiconductor components and systems;
  • electro-thermal models and technologies; the state-of-the-art technologies discussed include CMOS, BiCMOS, silicon on insulator (SOI), bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power,  gallium arsenide (GaAs), gallium nitride (GaN), magneto-resistive (MR) , giant magneto-resistors (GMR),  tunneling magneto-resistor (TMR),  devices; micro electro-mechanical (MEM) systems, and  photo-masks and reticles; 
  • practical methods to use failure analysis for the understanding of ESD circuit operation, temperature analysis, power distribution, ground rule development, internal bus distribution, current path analysis, quality metrics, (connecting the theoretical to the practical analysis);
  • the failure of each key element of a technology from passives, active elements to the circuit, sub-system to package, highlighted by case studies of the elements, circuits and system-on-chip (SOC) in today’s  products. 

ESD: Failure Mechanisms and Models is a continuation of the author’s series of books on ESD protection. It is an essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic era.

About the Author xvii
Preface xix
Acknowledgments xxiii
Failure Analysis and ESD
1(30)
Introduction
1(15)
FA Techniques for Evaluation of ESD Events
2(1)
Fundamental Concepts of ESD FA Methods and Practices
3(1)
ESD Failure: Why Do Semiconductor Chips Fail?
4(1)
How to Use FA to Design ESD Robust Technologies
5(1)
How to Use FA to Design ESD Robust Circuits
6(1)
How to Use FA for Temperature Prediction
7(1)
How to Use Failure Models for Power Prediction
8(1)
FA Methods, Design Rules, and ESD Ground Rules
9(1)
FA and Semiconductor Process-Induced ESD Design Asymmetry
9(1)
FA Methodology and Electro-thermal Simulation
10(1)
FA and ESD Testing Methodology
10(3)
FA Methodology for Evaluation of ESD Parasitics
13(1)
FA Methods and ESD Device Operation Verification
14(1)
FA Methodology to Evaluate Inter-power Rail Electrical Connectivity
14(2)
How to Use FA to Eliminate Failure Mechanisms
16(1)
ESD Failure: How Do Micro-electronic Devices Fail?
16(4)
ESD Failure: How Do Metallurgical Junctions Fail?
18(1)
ESD Failure: How Do Insulators Fail?
18(1)
ESD Failure: How Do Metals Fail?
19(1)
Sensitivity of Semiconductor Components
20(4)
ESD Sensitivity as a Function of Materials
20(1)
ESD Sensitivity as a Function of Semiconductor Devices
21(1)
ESD Sensitivity as a Function of Product Type
21(1)
ESD and Technology Scaling
22(2)
ESD Technology Roadmap
24(1)
How Do Semiconductor Chips Fail---Are the Failures Random or Systematic?
24(2)
Closing Comments and Summary
26(1)
Problems
26(1)
References
27(4)
Failure Analysis Tools, Models, and Physics of Failure
31(46)
FA Techniques for Evaluation of ESD Events
31(3)
FA Tools
34(9)
Optical Microscope
34(1)
Scanning Electron Microscope
35(1)
Transmission Electron Microscope
35(1)
Emission Microscope
35(1)
Thermally Induced Voltage Alteration
36(1)
Superconducting Quantum Interference Device Microscope
37(1)
Atomic Force Microscope
38(2)
The 2-D AFM
40(1)
Picosecond Current Analysis Tool
40(2)
Transmission Line Pulse---Picosecond Current Analysis Tool
42(1)
ESD Simulation: ESD Pulse Models
43(11)
Human Body Model
43(1)
Machine Model
44(1)
Cassette Model
45(1)
Socketed Device Model
46(1)
Charged Board Model
46(1)
Cable Discharge Event
47(2)
IEC System-Level Pulse Model
49(1)
Human Metal Model
50(1)
Transmission Line Pulse Testing
51(2)
Very Fast Transmission Line Pulse (VF-TLP) Model
53(1)
Ultra-fast Transmission Line Pulse (UF-TLP) Model
53(1)
Electro-Thermal Physical Models
54(14)
Tasca Model
54(2)
Wunsch-Bell Model
56(4)
Smith-Littau Model
60(2)
Ash Model
62(1)
Arkihpov, Astvatsaturyan, Godovosyn, and Rudenko Model
63(1)
Dwyer, Franklin, and Campbell Model
63(4)
Vlasov-Sinkevitch Model
67(1)
Statistical Models for ESD Prediction
68(2)
Closing Comments and Summary
70(1)
Problems
70(1)
References
71(6)
CMOS Failure Mechanisms
77(48)
Tables of CMOS ESD Failure Mechanisms
77(1)
LOCOS Isolation-Defined CMOS
77(9)
LOCOS-Bound Structures
82(1)
LOCOS-Bound P+/N-well Junction Diode
83(1)
LOCOS-Bound N+/P- Substrate Junction Diode
84(1)
LOCOS-Bound N-Well/P- Substrate Junction Diode
84(1)
LOCOS-Bound Lateral N-well to N-well
85(1)
LOCOS-Bound Lateral N+ to N-well
85(1)
LOCOS-Bound Lateral PNP Bipolar
85(1)
LOCOS-Bound Thick Oxide MOSFET
85(1)
Shallow Trench Isolation (STI)
86(4)
STI Pull-down ESD Failure Mechanism
86(1)
STI Pull-down and Gate Wrap-around
87(1)
Silicides and Diodes
88(1)
Non-silicide Diode Structures
88(1)
STI-Defined P+/N-well Diode
88(1)
STI-Defined N-well to Substrate Diode
88(2)
STI Lateral N-well to N-well NPN Structures
90(1)
Polysilicon-Defined Devices
90(2)
Polysilicon-Bound Gated Diode
91(1)
Lateral Diode with Block Mask
92(1)
MOSFETs
92(7)
N-channel MOSFETs
93(2)
N-channel Multi-finger MOSFETs
95(2)
Cascoded Series N-channel MOSFETs
97(1)
P-channel MOSFETs
97(1)
P-channel Multi-finger MOSFETs
98(1)
Tungsten Silicide Gate MOSFET
98(1)
Polysilicon Silicide Gate MOSFET
98(1)
Metal Gate/High k Dielectric MOSFET
98(1)
Resistors
99(3)
Diffused Resistors
99(1)
N-well Resistors
99(2)
Buried Resistors
101(1)
Silicide Blocked N-diffusion Resistors
102(1)
Interconnects: Wires, Vias, and Contacts
102(10)
Aluminum Interconnects
103(1)
Copper Interconnects
104(3)
Tungsten Interconnects
107(1)
Vias
107(3)
Contacts
110(2)
ESD Failure in CMOS Nanostructures
112(6)
ESD Failures in 130 nm Technology
112(1)
ESD Failures in 90 nm Technology
113(1)
ESD Failures in 65 nm Technology
114(1)
ESD Failures in 45 nm Technology
115(1)
ESD Failures in 32 nm Technology
115(1)
ESD Failures in 22 nm Technology
116(2)
Closing Comments and Summary
118(1)
Problems
118(1)
References
119(6)
CMOS Circuits: Receivers and Off-Chip Drivers
125(34)
Table of CMOS Receiver and OCD ESD Failure Mechanisms
125(1)
Receiver Circuits
125(2)
Receivers Circuits with ESD Networks
127(4)
Receiver with Dual Diode and Series Resistor
127(1)
Receiver with Diode-Resistor-Diode
128(1)
Receiver with Diode-Resistor-MOSFET
128(3)
Receiver Circuits with Half-Pass Transmission Gate
131(3)
Receiver with Full-Pass Transmission Gate
134(1)
Receiver with Full-Pass Transmission Gate with Second Power Source
135(1)
Receiver, Half-Pass Transmission Gate, and Keeper Network
135(4)
Receiver, Half-Pass Transmission Gate, and the Modified Keeper Network
138(1)
Receiver Circuits with Pseudo-Zero VT Half-Pass Transmission Gate
139(2)
Receiver with Zero VT Transmission Gate
141(2)
Receiver Circuits with Bleed Transistors
143(1)
Receiver Circuits with Test Functions
144(2)
Receiver with Schmitt Trigger Feedback Networks
146(2)
Off-Chip Drivers
148(1)
OCD Design Process-Related ESD Failure
148(1)
Single NFET Pull-down OCD
149(1)
Series Cascode MOSFETs
150(2)
I/O Design Considerations and ESD Parasitic Failure Mechanisms
152(3)
Layout-Dependent ESD Failure Mechanisms
153(2)
Closing Comments and Summary
155(1)
Problems
155(1)
References
156(3)
CMOS Integration
159(36)
Table of CMOS Integration ESD Failure Mechanisms
159(1)
Architcture and Design Synthesis-Related Failures
159(2)
Alternate Current Loop
161(1)
Chip Capacitance
161(1)
ESD Power Clamps
161(1)
Intra- and Inter-domain ESD Protection
162(1)
Split Ground Configurations
162(1)
Mixed Voltage Interface
163(5)
Peripheral Vcc and Core VDD Power Rails
163(1)
Two Power Supply: Peripheral and Core VDD Power Rails
164(2)
Voltage Regulators
166(2)
Mixed Signal Interface
168(2)
Digital and Analog
168(1)
Digital, Analog, and RF
169(1)
Inter-domain Signal Line ESD Failures
170(3)
Digital-to-Analog Signal Line Failures
170(3)
Decoupling Capacitors
173(1)
System Clock and Phase-Locked Loop
174(1)
Fuse Networks
174(4)
Fuse Networks and ESD Failure Mechanisms
174(2)
eFUSE and ESD Failure Mechanisms
176(2)
Bond Pads
178(3)
Floating Bond Pads
178(1)
Floating Bond Pads over Interconnects
179(1)
Bond Pad Failure: Programmable VDD
180(1)
Bond Pad to Bond Pad ESD Failures
180(1)
Bond Pad Failure: ESD Structures under Bond Pads
181(1)
MOSFET Gate Structure
181(1)
MOSFET Floating Gate and Floating Gate Tie Down
181(1)
MOSFET Gates Connected to Power VDD
182(1)
Fill Shapes
182(1)
No Connects
182(1)
Test Circuitry
183(1)
Multi-chip Systems
183(2)
Multi-chip systems on Multi-layer Ceramic
183(1)
Multi-chip Systems and Silicon Carriers
184(1)
Multi-chip Systems: Chip-to-Chip Failures with Adjacent Chips
184(1)
Multi-chip Systems: Proximity Communications
185(1)
CMOS Latchup Failures
185(3)
Table of Latchup Failures
185(2)
Latchup Failure Mechanisms
187(1)
Closing Comments and Summary
188(1)
Problems
189(2)
References
191(4)
SOI ESD Failure Mechanisms
195(30)
Tables of SOI Device and Integration ESD Failure Mechanisms
195(2)
SOI N-channel MOSFETs
197(2)
SOI Single-Finger N-channel MOSFETs
197(1)
SOI Multi-finger MOSFETs
198(1)
SOI Diodes
199(2)
SOI Poly-bound Gated Diode
199(1)
SOI Poly-bound Gated Diode with Halo Implants
199(2)
SOI Buried Resistors
201(1)
SOI Failure Mechanisms in 150 nm Technology
202(2)
Lateral Graded Gated SOI Diode Structure
203(1)
Lateral Ungated SOI Diode Structure
203(1)
SOI ESD Failure Mechanisms in 45 nm Technology
204(2)
SOI Lateral Gated Diode
204(1)
SOI Double-Well Field Effect Device
204(1)
SOI: ESD under BOX
205(1)
SOI ESD Failure Mechanisms in 32 nm Technology
206(1)
SOI ESD Failure Mechanisms in 22 nm Technology and the Future
207(3)
SOI Design Synthesis and ESD Failure Mechanisms
210(7)
SOI ESD Circuit Failure Mechanisms
210(2)
Mixed Voltage SOI ESD Circuit Failure Mechanisms
212(2)
SOI Receiver Network ESD Failures
214(1)
SOI Fuse Networks
215(1)
SOI Dynamic Threshold Circuitry
215(1)
SOI Active Clamp Circuitry
216(1)
SOI Integration: ESD Failure Mechanisms
217(1)
Closing Comments and Summary
218(1)
Problems
218(2)
References
220(5)
RF COMS and ESD
225(34)
Tables of RF CMOS ESD Failure Mechanisms
225(3)
RF MOSFET
228(1)
RF Shallow Trench Isolation Diode
229(2)
RF Polysilicon Gated Diode
231(1)
Silicon-Controlled Rectifier
232(1)
Schottky Barrier Diodes
233(2)
Capacitors
235(6)
MIM Capacitor
236(1)
Varactors and Hyper-abrupt Varactor Capacitors
237(1)
Metal-ILD-Metal Capacitor
237(1)
VPP Capacitor
237(4)
Decoupling Capacitor
241(1)
Resistors
241(4)
Silicon Resistors
241(1)
Polysilicon Resistors
241(1)
Electronic Fuse (eFUSE) Resistor
241(4)
Inductors
245(5)
Planar Inductors
245(3)
T-coil Inductor Pairs
248(2)
Examples of RF ESD Circuit Failure Mechanisms
250(3)
Closing Comments and Summary
253(1)
Problems
253(1)
References
254(5)
Micro-electromechnical Systems
259(28)
Table of MEM Failure Mechanisms
260(1)
Electrostatically Actuated Devices
260(3)
Micro-mechanical Engines
263(2)
Torsional Ratcheting Actuator
265(2)
Electromagnetic Micro-power Generators
267(2)
MEM Inductors
269(1)
Electrostatically Actuated Variable Capacitor
270(1)
Micro-mechanical Switches
271(1)
RF MEM Switch
271(6)
Micro-mechanical Mirrors
277(1)
Electrostatically Actuated Torsional Micro-mirrors
277(4)
Closing Comments and Summary
281(1)
Problems
281(1)
References
282(5)
Gallium Arsenide
287(28)
Tables of GaAs-Based ESD Failure Mechanisms
287(3)
GaAs Technology
290(1)
GaAs Energy-to-failure and Power-to-failure
290(3)
GaAs ESD Failures in Active and Passive Elements
293(1)
GaAs HBT Devices
294(3)
GaAs HBT Device ESD Results
295(1)
GaAs HBT Diode Strings
296(1)
GaAs HBT-Based Passive Elements
297(1)
GaAs HBT Base-Collector Varactor
297(1)
GaAs PHEMT Devices
298(2)
GaAs PHEMT Low Noise Amplifiers
299(1)
GaAs Power Amplifiers
300(3)
GaAs PAs with Off-Chip Protection
303(1)
InGaAs
303(3)
InGaAs/AlGaAs PHEMT Devices
304(1)
InGaAs/AlGaAs PHEMT ESD Failure
305(1)
Gallium Nitride
306(3)
GaN ESD Failure Mechanisms
307(2)
InP and ESD
309(1)
Closing Comments and Summary
309(1)
Problems
309(1)
References
310(5)
Smart Power, LDMOS, and BCD Technology
315(18)
Tables of LDMOS ESD Failure Mechanisms
315(2)
LOCOS-Defined LDMOS Devices
317(2)
STI-Defined LDMOS Devices
319(1)
STI-Defined Isolated LDMOS Transistors
320(1)
LDMOS Transistors: ESD Electrical Measurements
321(1)
LDMOS-Based ESD Networks
322(1)
LDMOS ESD Failure Mechanisms
323(1)
LDMOS Transistor Design Enhancement
324(1)
Latchup Events in LDMOS and BCD Technology
324(2)
Closing Comments and Summary
326(1)
Problems
327(1)
References
328(5)
Magnetic Recording
333(28)
Tables of Magnetic Recording Failure Mechanisms
333(1)
MR Heads
334(9)
MR Head Structure
335(1)
MR Head Electrical Model
336(1)
MR Head ESD Failures
337(3)
AMR Head Failure Mechanisms
340(2)
ESD Protection of MR Head
342(1)
Inductive Heads
343(3)
Inductive Head Structure
343(1)
Inductive Head Structure: Electrical Schematic
344(1)
Inductive Head Structure: ESD Failures
345(1)
GMR Heads
346(3)
GMR Head Structure
346(1)
GMR Head ESD Failures
347(1)
GMR Head ESD Protection
347(2)
TMR Heads
349(2)
TMR Structure
349(1)
TMR ESD Results
349(2)
TMR ESD Failure Mechanisms
351(1)
ESD Solutions
351(3)
Inductive Head Shunt
351(1)
MR Shunt
351(1)
Parasitic Magnetic Shields
352(1)
Suspension ESD Shunt
352(1)
Integration of a Silicon Chip
353(1)
Deposited Amorphous Silicon ESD Diodes
353(1)
Silicon Substrates
353(1)
Closing Comments and Summary
354(1)
Problems
354(1)
References
355(6)
Photo-masks and Reticles: Failure Mechanisms
361(18)
Table of Photo-masks Failure Mechanisms
361(1)
Photo-mask Failure Mechanisms
361(3)
Photo-mask Inspection Tools
364(1)
Photo-mask ESD Characterization
365(1)
Electrical Breakdown versus Gap Spacing
365(2)
Electrical Breakdown in Air: The Townsend Model
367(1)
Electrical Breakdown in Air: Toepler's Spark Law
367(1)
Air Breakdown: The Paschen Breakdown Model
367(1)
Paschen Curve versus Reticle Breakdown Plot
368(1)
Electrical Model of Photo-mask Breakdown
369(2)
ESD Latent Damage
371(1)
ESD Damage for Single verus Multiple Events
372(1)
ESD Damage to Anti-reflective Coating
373(2)
ESD Solutions in Photo-masks
375(1)
Closing Comments and Summary
375(1)
Problems
375(1)
References
376(3)
Index 379
Dr Steven H. Voldman received his B.S. in Engineering Science from the University of Buffalo (1979); M.S. EE (1981) and Electrical Engineer Degree (1982) from M.I.T; MS Engineering Physics (1986) and Ph.D EE (1991) from the University of Vermont under IBM's Resident Study Fellow Program. At M.I.T, he worked as a member of the M.I.T. Plasma Fusion Center, and the High Voltage Research Laboratory (HVRL). At IBM, as a reliability device engineer, his work include pioneering work in bipolar/ CMOS SRAM alpha particle and cosmic ray SER simulation, MOSFET gate-induced drain leakage (GIDL) mechanism, hot electron, epitaxy/well design, CMOS latchup, and ESD. Since 1986, he has been responsible for defining the IBM ESD/latchup strategy for CMOS, SOI, BiCMOS and RF CMOS and SiGe technologies. He has authored ESD and latchup publications in the area of MOSFET Scaling, device simulations, copper, low-k, MR heads, CMOS, SOI , Sage and SiGeC technology. Voldman served as SEMATECH ESD Working Group Chairman (1996-2000), ESD Association General Chairman and Board of Directors, International Reliability Physics (IRPS) ESD/Latchup Chairman, International Physical and Failure Analysis (IPFA) Symposium ESD Sub-Committee Chairman, ESD Association Standard Development Chairman on Transmission Line Pulse Testing, ESD Education Committee, and serves on the ISQED Committee, Taiwan ED Conference (T-ESDC) Technical Program Committee. Voldman has provided ESD lectures for universities (e.g. MIT Lecture Series, Taiwan National Chiao-Tung University, and Singapore Nanyang Technical University). He is a recipient of over 125 US patents, over 100 publications, and also provides talks on patenting, and invention. He has been featured in EE Times, Intellectual Property Law and Business and authored the first article on ESD phenomena for the October 2002 edition of Scientific American entitled Lightening Rods for Nanostructures, and Pour La Science, Le Scienze, and Swiat Nauk international editions. Dr. Voldman was recently accepted as the first IEEE Fellow for ESD phenomena in semiconductors for ' contributions to electrostatic discharge protection CMOS, SOI and SiGe technologies'.