Muutke küpsiste eelistusi

E-raamat: Essays in Constructive Mathematics

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Sep-2022
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030985585
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Sep-2022
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030985585

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This collection of essays aims to promote constructive mathematics, not by defining it or formalizing it, but by practicing it. All definitions and proofs are based on finite algorithms, which pave illuminating paths to nontrivial results, primarily in algebra, number theory, and the theory of algebraic curves. The second edition adds a new set of essays that reflect and expand upon the first. 





The topics covered derive from classic works of nineteenth-century mathematics, among them Galoiss theory of algebraic equations, Gausss theory of binary quadratic forms, and Abels theorems about integrals of rational differentials on algebraic curves. Other topics include Newton's diagram, the fundamental theorem of algebra, factorization of polynomials over constructive fields, and the spectral theorem for symmetric matrices, all treated using constructive methods in the spirit of Kronecker.





In this second edition, the essays of the first edition are augmented with newessays that give deeper and more complete accounts of Galoiss theory, points on an algebraic curve, and Abels theorem. Readers will experience the full power of Galoiss approach to solvability by radicals, learn how to construct points on an algebraic curve using Newtons diagram, and appreciate the amazing ideas introduced by Abel in his 1826 Paris memoir on transcendental functions.









Mathematical maturity is required of the reader, and some prior knowledge of Galois theory is helpful.  But experience with constructive mathematics is not necessary; readers should simply be willing to set aside abstract notions of infinity and explore deep mathematics via explicit constructions.

Arvustused

A book of this kind with significantly worked-out algorithmic calculations, including many examples, is a rare valuable product. (Wim Ruitenburg, Mathematical Reviews, April, 2024)





This is the second edition of Harold Edwards' Essays in Constructive Mathematics ... . The essays contained in this volume are serious works of mathematics done from a constructivist perspective. ... I think that most mathematicians already familiar with these topics will find Edwards' constructivist approach to the topics covered to be fascinating. (Benjamin Linowitz, MAA Reviews, December 31, 2023)

Part I.-
1. A Fundamental Theorem.-
2. Topics in Algebra.-
3. Some Quadratic Problems.-
4. The Genus of an Algebraic Curve.-
5. Miscellany. Part II.-
6. Constructive Algebra.-
7. The Algorithmic Foundation of Galois's Theory.-
8. A Constructive Definition of Points on an Algebraic Curve.-
9. Abel's Theorem.
Harold M. Edwards [ 19362020] was Professor Emeritus of Mathematics at New York University. His research interests lay in number theory, algebra, and the history and philosophy of mathematics. He authored numerous books, including Riemanns Zeta Function (1974, 2001) and Fermats Last Theorem (1977), for which he received the Leroy P. Steele Prize for mathematical exposition in 1980.





David A. Cox (Contributing Author) is Professor Emeritus of Mathematics in the Department of Mathematics and Statistics of Amherst College. He received the Leroy P. Steele Prize for mathematical exposition in 2016 for his book Ideals, Varieties, and Algorithms, with John Little and Donal OShea.