|
|
1 | (18) |
|
|
1 | (1) |
|
1.2 Microsoft Excel 2019 Versus Microsoft Excel 365 |
|
|
2 | (1) |
|
|
2 | (1) |
|
1.4 Microsoft Excel and Power Query |
|
|
3 | (1) |
|
1.5 Microsoft Excel 64-Bit Versus Microsoft Excel 32-Bit |
|
|
3 | (2) |
|
1.5.1 Microsoft Excel 64-Bit and Power Query |
|
|
5 | (1) |
|
1.6 Statistical Environment of Microsoft Excel 365 |
|
|
5 | (3) |
|
1.7 Python Programming Language |
|
|
8 | (2) |
|
1.7.1 Python Libraries for Statistics |
|
|
9 | (1) |
|
1.7.2 Python Development Environment |
|
|
9 | (1) |
|
1.8 R Programming Language |
|
|
10 | (1) |
|
1.9 Web Scraping for Market and Financial Data |
|
|
11 | (3) |
|
1.9.1 Microsoft Excel Power Query |
|
|
11 | (3) |
|
1.10 Case Study, Google Study, and Active Study Approach |
|
|
14 | (1) |
|
1.11 Structure of the Book |
|
|
15 | (1) |
|
|
15 | (4) |
|
Part I Financial Statistics |
|
|
|
2 Data Collection, Presentation, and Yahoo! Finance |
|
|
19 | (62) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
2.4.1 Dow Jones Industrial Average |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (4) |
|
2.5.1 Quandl Data Provider |
|
|
21 | (4) |
|
|
25 | (19) |
|
|
25 | (19) |
|
|
44 | (23) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (19) |
|
|
65 | (2) |
|
2.8 Charting Historical Data |
|
|
67 | (11) |
|
2.8.1 Microsoft Excel 365 Chart Wizard |
|
|
67 | (6) |
|
|
73 | (5) |
|
2.9 Using Python to Graph Johnson & Johnson's Historical Prices |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
80 | (1) |
|
3 Histograms, Rate of Returns, and Financial Statements |
|
|
81 | (52) |
|
|
81 | (1) |
|
|
81 | (23) |
|
|
81 | (17) |
|
3.2.2 Dynamic Power Query |
|
|
98 | (4) |
|
|
102 | (2) |
|
|
104 | (7) |
|
|
104 | (1) |
|
|
105 | (6) |
|
3.4 Using Python to Create Johnson & Johnson's Rate of Return Histogram |
|
|
111 | (3) |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
114 | (18) |
|
|
114 | (15) |
|
|
129 | (3) |
|
|
132 | (1) |
|
|
132 | (1) |
|
4 Numerical Summary Measures on Rate of Returns of Stocks and Market Indexes |
|
|
133 | (36) |
|
|
133 | (10) |
|
4.1.1 Summary Measures Excel Workbook |
|
|
133 | (1) |
|
|
133 | (10) |
|
4.2 Measure of Central Tendency |
|
|
143 | (1) |
|
4.2.1 Arithmetic Mean (Average) |
|
|
143 | (1) |
|
4.2.2 Annualized Monthly Returns |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
4.3 Measure of Dispersion |
|
|
144 | (3) |
|
|
144 | (1) |
|
4.3.2 Annualized Monthly Variance |
|
|
145 | (1) |
|
|
145 | (1) |
|
4.3.4 Annualized Monthly Standard Deviation |
|
|
145 | (1) |
|
4.3.5 Coefficient of Variation |
|
|
146 | (1) |
|
|
146 | (1) |
|
4.4 Measure of Relative Position |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (2) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
4.6 Measure of Linear Relationship |
|
|
150 | (1) |
|
4.6.1 Coefficient of Correlation |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
4.8 Excel Rate of Return Box and Whisker Workbook |
|
|
152 | (3) |
|
|
152 | (1) |
|
4.8.2 Ticker1, Ticker2, Ticker3 Worksheets |
|
|
153 | (1) |
|
4.8.3 Ticker123 Worksheet |
|
|
154 | (1) |
|
4.9 Creating Box and Whisker Plot in Excel |
|
|
155 | (8) |
|
4.9.1 Single Box and Whisker Plot |
|
|
155 | (2) |
|
4.9.2 Combined Box and Whisker Plot |
|
|
157 | (6) |
|
4.10 Using Python to Calculate the 5-Year Numerical Measures of the Rate of Return of AAPL, MSFT, and the S&P 500 |
|
|
163 | (4) |
|
|
167 | (1) |
|
|
167 | (2) |
|
5 Probability Concepts and Their Analysis |
|
|
169 | (28) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (19) |
|
5.3.1 Probability Simulation with Excel VBA |
|
|
170 | (10) |
|
5.3.2 Probability Simulation in R |
|
|
180 | (4) |
|
5.3.3 Probability Simulation in Python |
|
|
184 | (4) |
|
|
188 | (3) |
|
5.4.1 Combination List with Excel VBA |
|
|
189 | (2) |
|
5.4.2 Combination List with R |
|
|
191 | (1) |
|
|
191 | (4) |
|
5.5.1 Permutation List with Excel VBA |
|
|
192 | (2) |
|
5.5.2 Permutation List with R |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (2) |
|
6 Discrete Random Variables and Probability Distributions |
|
|
197 | (34) |
|
6.1 Introduction and Probability Distribution |
|
|
197 | (1) |
|
6.2 Cumulative Probability Distribution |
|
|
198 | (4) |
|
6.3 Binomial Distribution |
|
|
202 | (9) |
|
6.3.1 Binomial Distribution in Excel |
|
|
203 | (4) |
|
6.3.2 Binomial Distribution in R |
|
|
207 | (3) |
|
6.3.3 Binomial Distribution in Python |
|
|
210 | (1) |
|
6.4 Poisson Random Variable |
|
|
211 | (7) |
|
6.4.1 Poisson Distribution in Excel |
|
|
212 | (3) |
|
6.4.2 Poisson Distribution in R |
|
|
215 | (2) |
|
6.4.3 Poisson Distribution in Python |
|
|
217 | (1) |
|
6.5 Excel 4.0 Macro Functions and Excel Names |
|
|
218 | (1) |
|
|
219 | (5) |
|
|
219 | (5) |
|
6.7 Stephen Bullen's Charting Method |
|
|
224 | (6) |
|
6.7.1 Binomial Distribution |
|
|
228 | (1) |
|
6.7.2 Poisson Distribution |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
|
7 Normal and Lognormal Distributions |
|
|
231 | (24) |
|
|
231 | (1) |
|
|
231 | (3) |
|
7.2.1 Uniform Distribution in R |
|
|
231 | (3) |
|
|
234 | (5) |
|
7.3.1 Normal Distribution in R |
|
|
234 | (3) |
|
7.3.2 Normal Distribution in Python |
|
|
237 | (2) |
|
7.4 Standard Normal Distribution |
|
|
239 | (4) |
|
7.4.1 Standard Normal Distribution in R |
|
|
239 | (1) |
|
7.4.2 Standard Normal Distribution in Excel |
|
|
240 | (3) |
|
7.5 Lognormal Distribution |
|
|
243 | (4) |
|
7.5.1 Lognormal Distribution in R |
|
|
243 | (3) |
|
7.5.2 Lognormal Distribution in Python |
|
|
246 | (1) |
|
7.6 Normal Quantile-Quantile (QQ) Plot in Excel |
|
|
247 | (3) |
|
7.7 Normal Quantile-Quantile (QQ) Plot in Python |
|
|
250 | (3) |
|
|
253 | (1) |
|
|
254 | (1) |
|
8 Sampling Distributions and Central Limit Theorem |
|
|
255 | (24) |
|
|
255 | (1) |
|
8.2 Sample Distribution in Excel |
|
|
255 | (6) |
|
8.3 Mean of Sample Distribution Equals Mean of Population |
|
|
261 | (5) |
|
8.4 Sample Distribution in Python |
|
|
266 | (1) |
|
8.5 Central Limit Theorem |
|
|
267 | (10) |
|
8.5.1 Uniform Distribution in R |
|
|
268 | (2) |
|
8.5.2 Normal Distribution in R |
|
|
270 | (2) |
|
8.5.3 Lognormal Distribution in R |
|
|
272 | (1) |
|
8.5.4 Binomial Distribution in R |
|
|
273 | (2) |
|
8.5.5 Poisson Distribution in R |
|
|
275 | (2) |
|
|
277 | (1) |
|
|
277 | (2) |
|
9 Other Continuous Distributions |
|
|
279 | (24) |
|
|
279 | (1) |
|
|
279 | (5) |
|
9.2.1 T-Distribution in R |
|
|
279 | (1) |
|
9.2.2 T-Distribution in Python |
|
|
280 | (1) |
|
9.2.3 Student's t-Distribution in Excel |
|
|
281 | (3) |
|
9.3 Chi-Square (x2) Distribution |
|
|
284 | (6) |
|
9.3.1 Chi-Square (x2) Distribution in R |
|
|
285 | (1) |
|
9.3.2 Chi-Square (x2) Distribution in Python |
|
|
286 | (1) |
|
9.3.3 Chi-Square (x2) Distribution in Excel |
|
|
287 | (3) |
|
|
290 | (6) |
|
9.4.1 F-Distribution in R |
|
|
290 | (1) |
|
9.4.2 F-Distribution in Python |
|
|
291 | (1) |
|
9.4.3 F-Distribution in Excel |
|
|
292 | (4) |
|
9.5 Exponential Distribution |
|
|
296 | (5) |
|
9.5.1 Exponential Probability Density Function in Excel |
|
|
296 | (4) |
|
9.5.2 Exponential Cumulative Density Function in Excel |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (2) |
|
|
303 | (14) |
|
|
303 | (1) |
|
10.2 Confidence Interval Simulation in Python |
|
|
304 | (4) |
|
|
305 | (2) |
|
10.2.2 Confidence Interval Simulation Data |
|
|
307 | (1) |
|
10.3 Interval Estimates for μ When σ2 is Known |
|
|
308 | (3) |
|
10.3.1 Z Confidence Intervals |
|
|
308 | (3) |
|
10.4 Confidence Intervals for μ When σ2 is Unknown |
|
|
311 | (1) |
|
10.4.1 T Confidence Intervals |
|
|
311 | (1) |
|
10.5 Confidence Intervals for the Population Proportion |
|
|
312 | (3) |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
314 | (1) |
|
10.6 Confidence Intervals for the Variance |
|
|
315 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
317 | (14) |
|
|
317 | (1) |
|
11.2 One-Tailed Tests of Mean for Large Samples |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
318 | (1) |
|
11.4 Hypothesis Testing and the p-Value |
|
|
319 | (1) |
|
|
319 | (1) |
|
11.5 One-Tailed Tests of Mean for Large Samples: Two-Sample Test of Means |
|
|
320 | (2) |
|
|
320 | (2) |
|
11.6 Two-Tailed Tests of Mean for Large Samples |
|
|
322 | (2) |
|
|
322 | (1) |
|
|
323 | (1) |
|
11.7 One-Tailed Tests of Mean for Small Samples |
|
|
324 | (1) |
|
|
324 | (1) |
|
11.8 Hypothesis Testing for a Population Proportion |
|
|
325 | (1) |
|
|
325 | (1) |
|
11.9 The Power of a Test and Power Function |
|
|
326 | (1) |
|
|
326 | (1) |
|
11.10 Power and Sample Size |
|
|
327 | (1) |
|
11.11 Power and Alpha Size |
|
|
327 | (1) |
|
11.12 Comparing the Average EPS of AAPL and MSFT in Python |
|
|
328 | (2) |
|
|
330 | (1) |
|
|
330 | (1) |
|
12 Analysis of Variance and Chi-Square Tests |
|
|
331 | (22) |
|
|
331 | (2) |
|
12.2 One-Way Analysis of Variance |
|
|
333 | (11) |
|
|
333 | (8) |
|
|
341 | (3) |
|
12.3 Two-Way Analysis of Variance |
|
|
344 | (3) |
|
|
344 | (3) |
|
|
347 | (1) |
|
|
347 | (2) |
|
|
348 | (1) |
|
12.6 Test of Independence |
|
|
349 | (1) |
|
|
349 | (1) |
|
12.7 Using the Chi-Square Test and Python to Determine if the Rate of Return of Apple Inc. Is a Normal Distribution |
|
|
350 | (2) |
|
|
352 | (1) |
|
|
352 | (1) |
|
13 Simple Linear Regression and the Correlation Coefficient |
|
|
353 | (26) |
|
|
353 | (1) |
|
|
353 | (3) |
|
13.3 Retrieving Data Using Power Query |
|
|
356 | (3) |
|
13.4 Combining Power Query Data Sets |
|
|
359 | (2) |
|
|
361 | (3) |
|
13.6 Deterministic Relationship and Stochastic Relationship |
|
|
364 | (1) |
|
|
365 | (1) |
|
13.8 Standard Assumptions for Linear Regression |
|
|
365 | (1) |
|
13.9 Standard Error of Estimate |
|
|
366 | (1) |
|
13.10 The Coefficient of Determination |
|
|
367 | (1) |
|
13.11 Correlation Coefficient |
|
|
368 | (2) |
|
13.12 Regression Analysis in Excel |
|
|
370 | (4) |
|
13.12.1 Correlation and Coefficient of Determination |
|
|
372 | (1) |
|
|
373 | (1) |
|
13.12.3 Residuals of the Regression Line |
|
|
373 | (1) |
|
13.12.4 Fit Plot of the Data Set |
|
|
374 | (1) |
|
13.13 INTERCEPT and SLOPE Excel Functions |
|
|
374 | (1) |
|
13.14 Oil and Gasoline Regression Analysis in Python |
|
|
375 | (3) |
|
|
378 | (1) |
|
|
378 | (1) |
|
14 Simple Linear Regression and Correlation: Analyses and Applications |
|
|
379 | (32) |
|
|
379 | (1) |
|
14.2 Standard Error of Estimate |
|
|
380 | (1) |
|
14.3 Two-Tailed t-Test for β |
|
|
380 | (2) |
|
14.4 Two-Tailed t-Test for α |
|
|
382 | (2) |
|
14.5 Confidence Interval of β |
|
|
384 | (1) |
|
|
384 | (1) |
|
14.7 The Relationship Between the F-Test and the t-Test |
|
|
385 | (1) |
|
|
386 | (1) |
|
14.9 Yahoo! Finance Beta Screener |
|
|
386 | (1) |
|
14.10 Historical Monthly Data from Yahoo! Finance |
|
|
386 | (3) |
|
14.10.1 Excel's Import Text Wizard |
|
|
387 | (2) |
|
14.11 Market Model of Apple Inc. in Excel |
|
|
389 | (16) |
|
14.11.1 Data Analysis and Regression Report |
|
|
390 | (2) |
|
14.11.2 Yahoo! Finance Beta and Power Query |
|
|
392 | (1) |
|
14.11.3 Yahoo! Finance Ticker Historical Data |
|
|
393 | (1) |
|
14.11.4 Yahoo! Finance S&P500 Historical Data |
|
|
394 | (1) |
|
14.11.5 Calculating Rate of Return |
|
|
394 | (2) |
|
14.11.6 Date, Time, and Epoch Time |
|
|
396 | (5) |
|
14.11.7 Converting to and from Epoch Time |
|
|
401 | (1) |
|
14.11.8 Other Power Queries |
|
|
402 | (3) |
|
14.12 Market Model of the Clorox Company in Excel |
|
|
405 | (3) |
|
14.12.1 Regression Report |
|
|
405 | (1) |
|
14.12.2 Yahoo! Finance Beta and the Market Model |
|
|
406 | (1) |
|
14.12.3 Sectors and Industry |
|
|
407 | (1) |
|
14.13 Market Model in Python |
|
|
408 | (2) |
|
|
410 | (1) |
|
|
410 | (1) |
|
15 Multiple Linear Regression |
|
|
411 | (24) |
|
|
411 | (2) |
|
|
413 | (1) |
|
|
414 | (1) |
|
15.4 Confidence Interval of B |
|
|
415 | (1) |
|
|
415 | (1) |
|
15.6 Analyzing the Determination of Price Per Share |
|
|
416 | (11) |
|
15.6.1 Regression Analysis |
|
|
416 | (3) |
|
|
419 | (2) |
|
|
421 | (6) |
|
15.7 Power Query Resource Issue |
|
|
427 | (1) |
|
15.8 Excel 365 and OneDrive |
|
|
428 | (3) |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
433 | (2) |
|
16 Residual and Regression Assumption Analysis |
|
|
435 | (30) |
|
|
435 | (1) |
|
|
435 | (3) |
|
|
438 | (3) |
|
16.4 The Expected Value of the Residual Term is Zero |
|
|
441 | (2) |
|
16.5 The Variance of the Error Term is Constant |
|
|
443 | (7) |
|
16.6 Autocorrelation Durbin-Watson Test |
|
|
450 | (3) |
|
|
450 | (2) |
|
16.6.2 Durbin-Watson 1% Table |
|
|
452 | (1) |
|
16.7 Autocorrelation Walmart's Dividend and EPS from 2019 to 2000 |
|
|
453 | (2) |
|
|
454 | (1) |
|
16.8 Using VBA to Retrieve a Ticker's Name |
|
|
455 | (3) |
|
16.9 Durbin-Watson Test Market Model Python Code |
|
|
458 | (1) |
|
16.10 The Independent Variables Are Uncorrelated: Multicollinearity |
|
|
459 | (2) |
|
16.11 Variance Inflationary Factor (VIF) |
|
|
461 | (2) |
|
|
463 | (1) |
|
|
463 | (2) |
|
17 Nonparametric Statistics |
|
|
465 | (16) |
|
|
465 | (1) |
|
|
465 | (3) |
|
17.2.1 Calculation in Microsoft Excel |
|
|
466 | (2) |
|
|
468 | (1) |
|
|
468 | (4) |
|
17.3.1 Calculation in Microsoft Excel |
|
|
469 | (1) |
|
|
470 | (1) |
|
17.3.3 Calculation in Python |
|
|
471 | (1) |
|
17.4 Spearman's Rank Correlation Test |
|
|
472 | (4) |
|
|
474 | (1) |
|
17.4.2 Calculation in Python |
|
|
475 | (1) |
|
17.5 Using Python to Test the Randomness of the Rate of Return of JNJ |
|
|
476 | (2) |
|
17.6 Using Python to Test the Randomness of the Rate of Return of MSFT |
|
|
478 | (1) |
|
|
479 | (1) |
|
|
479 | (2) |
|
18 Time Series: Analysis, Model, and Forecasting |
|
|
481 | (32) |
|
|
481 | (1) |
|
|
481 | (12) |
|
18.2.1 Moving Averages in Excel |
|
|
482 | (8) |
|
18.2.2 Moving Averages in R |
|
|
490 | (1) |
|
18.2.3 Moving Averages in Python |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
493 | (14) |
|
18.3.1 Linear Trend Analysis in Excel |
|
|
493 | (6) |
|
18.3.2 Linear Trend Analysis in R |
|
|
499 | (3) |
|
18.3.3 Linear Trend Analysis in Python |
|
|
502 | (5) |
|
18.4 Exponential Smoothing |
|
|
507 | (4) |
|
18.4.1 Exponential Smoothing in Excel |
|
|
508 | (2) |
|
18.4.2 Exponential Smoothing in Python |
|
|
510 | (1) |
|
|
511 | (1) |
|
|
511 | (2) |
|
19 Index Numbers and Stock Market Indexes |
|
|
513 | (24) |
|
|
513 | (1) |
|
|
513 | (5) |
|
|
513 | (5) |
|
19.3 Laspeyres Price Index |
|
|
518 | (1) |
|
|
519 | (1) |
|
19.5 Fisher's Ideal Price Index |
|
|
520 | (1) |
|
19.6 Stock Indexes: S&P500 Index and NASDAQ Composite Index |
|
|
521 | (1) |
|
19.7 Stock Indexes: Dow Jones Industrial Average (DJIA) |
|
|
522 | (2) |
|
19.8 Components of the Dow Jones Industrial Average (DJIA) |
|
|
524 | (2) |
|
19.8.1 Using Power Query to Retrieve the Dow 30 Components |
|
|
525 | (1) |
|
19.9 Components of the S&P 500 Index |
|
|
526 | (4) |
|
19.9.1 Using Power Query to Retrieve the S&P 500 Components |
|
|
526 | (4) |
|
19.10 Components of the NASDAQ Composite Index |
|
|
530 | (3) |
|
19.10.1 Using Power Query to Retrieve the NASDAQ Composite Components |
|
|
533 | (1) |
|
19.11 Using Python to Calculate the Four Statistical Moments of the Rate of Returns of Every Component in the S&P 500 |
|
|
533 | (3) |
|
|
536 | (1) |
|
|
536 | (1) |
|
20 Sampling Surveys: Methods and Applications |
|
|
537 | (6) |
|
|
537 | (1) |
|
20.2 Random Number Tables |
|
|
537 | (1) |
|
|
537 | (1) |
|
|
538 | (1) |
|
20.3 Confidence Interval for the Population Mean |
|
|
538 | (2) |
|
|
538 | (2) |
|
20.4 Confidence Interval for the Population Proportion |
|
|
540 | (1) |
|
|
540 | (1) |
|
20.5 Determining Sample Size |
|
|
541 | (1) |
|
|
541 | (1) |
|
|
541 | (1) |
|
|
542 | (1) |
|
21 Statistical Decision Theory |
|
|
543 | (16) |
|
|
543 | (1) |
|
21.2 Decision Trees and Expected Monetary Values |
|
|
543 | (1) |
|
21.3 NPV and IRR Method for Capital Budgeting Decision Under Certainty |
|
|
543 | (4) |
|
21.4 The Statistical Distribution Method |
|
|
547 | (8) |
|
|
547 | (5) |
|
21.4.2 Excel and VBA Application |
|
|
552 | (3) |
|
|
555 | (1) |
|
|
556 | (3) |
|
Part II Portfolio Analysis |
|
|
|
22 Risk Classification, Estimation, and Diversification |
|
|
559 | (28) |
|
|
559 | (1) |
|
|
559 | (3) |
|
|
559 | (2) |
|
|
561 | (1) |
|
|
561 | (1) |
|
22.3 Portfolio Analysis and Application |
|
|
562 | (6) |
|
22.3.1 Expected Rate of Return on a Portfolio |
|
|
562 | (2) |
|
22.3.2 The Two-Asset Case |
|
|
564 | (1) |
|
|
565 | (1) |
|
22.3.4 The Efficient Portfolios |
|
|
565 | (3) |
|
22.3.5 Corporate Application of Diversification |
|
|
568 | (1) |
|
22.4 Determination of Commercial Lending Rates |
|
|
568 | (2) |
|
22.5 The Dominance Principle and Performance EVALUATION |
|
|
570 | (2) |
|
|
572 | (14) |
|
|
586 | (1) |
|
23 Asset Allocation and Markowitz Portfolio-Selection Model |
|
|
587 | (30) |
|
|
587 | (1) |
|
23.2 Utility Theory, Utility Functions, and Indifference Curves |
|
|
587 | (8) |
|
|
588 | (1) |
|
|
588 | (5) |
|
23.2.3 Risk Aversion and Asset Allocation |
|
|
593 | (1) |
|
23.2.4 Indifference Curves |
|
|
594 | (1) |
|
23.3 Efficient Portfolios |
|
|
595 | (4) |
|
23.3.1 Portfolio Combinations |
|
|
596 | (1) |
|
|
596 | (3) |
|
23.4 Techniques for Calculating the Efficient Frontier with Short Selling |
|
|
599 | (6) |
|
23.4.1 The Normal Distribution |
|
|
599 | (1) |
|
23.4.2 The Log-Normal Distribution |
|
|
600 | (1) |
|
23.4.3 Mathematical Method to Calculate Efficient Frontier |
|
|
601 | (2) |
|
23.4.4 Portfolio Determination with Specific Adjustment for Short Selling |
|
|
603 | (2) |
|
23.4.5 Portfolio Determination Without Short Selling |
|
|
605 | (1) |
|
|
605 | (10) |
|
|
615 | (2) |
|
24 Capm, Beta Estimation, and Forecasting |
|
|
617 | (26) |
|
|
617 | (1) |
|
24.2 A Graphical Approach to the Derivation of the Capm |
|
|
617 | (5) |
|
24.2.1 The Lending, Borrowing, and Market Portfolios |
|
|
617 | (1) |
|
24.2.2 The Capital Market Line |
|
|
618 | (2) |
|
24.2.3 The Security Market Line--The Capital Asset Pricing Model |
|
|
620 | (2) |
|
24.3 Mathematical Approach to the Derivation of the Capm |
|
|
622 | (1) |
|
24.4 The Market Model and Risk Decomposition |
|
|
623 | (3) |
|
|
623 | (1) |
|
24.4.2 Risk Decomposition |
|
|
623 | (1) |
|
24.4.3 Why Beta is Important for Security Analysis |
|
|
624 | (1) |
|
24.4.4 Determination of Systematic Risk |
|
|
625 | (1) |
|
24.5 Growth Rates, Accounting Betas, and Variance in Ebit |
|
|
626 | (7) |
|
24.5.1 Sustainable Growth Rates |
|
|
626 | (2) |
|
|
628 | (1) |
|
|
628 | (1) |
|
24.5.4 Capital-Labor Ratio |
|
|
628 | (1) |
|
24.5.5 Fixed Costs and Variable Costs |
|
|
629 | (1) |
|
|
629 | (1) |
|
24.5.7 Market-Based Versus Accounting-Based Beta Forecasting |
|
|
630 | (3) |
|
24.6 Some Applications and Implications of the Capm |
|
|
633 | (1) |
|
|
634 | (6) |
|
|
640 | (3) |
|
25 Portfolio Selection Methods: Theory and Application |
|
|
643 | (28) |
|
|
643 | (1) |
|
25.2 The Single-Index Model |
|
|
643 | (10) |
|
25.2.1 Deriving the Single-Index Model |
|
|
645 | (3) |
|
25.2.2 Portfolio Analysis and the Single-Index Model <S2> |
|
|
648 | (4) |
|
25.2.3 The Market Model and Beta |
|
|
652 | (1) |
|
25.3 Multiple Indexes and the Multiple-Index Model |
|
|
653 | (3) |
|
|
656 | (12) |
|
|
668 | (3) |
|
26 Investment Performance Approach to Portfolio Selection |
|
|
671 | |
|
|
671 | (1) |
|
26.2 Sharpe Performance-Measure Approach with Short Sales Allowed |
|
|
671 | (6) |
|
26.3 Sharpe Performance-Measure Approach with Short Sales and Upper Bound Constraints |
|
|
677 | (2) |
|
26.4 Treynor-Measure Approach with Short Sales Allowed |
|
|
679 | (2) |
|
26.5 Treynor-Measure Approach with Short Sales not Allowed |
|
|
681 | (3) |
|
26.6 Impact of Short Sales on Optimal-Weight Determination |
|
|
684 | (1) |
|
26.7 Economic Rationale of the Treynor Performance-Measure Method |
|
|
684 | (1) |
|
|
685 | (10) |
|
|
695 | |