Muutke küpsiste eelistusi

E-raamat: Etale Cohomology

  • Formaat: 338 pages
  • Sari: Princeton Mathematical Series
  • Ilmumisaeg: 08-Apr-2025
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691273778
  • Formaat - EPUB+DRM
  • Hind: 46,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 338 pages
  • Sari: Princeton Mathematical Series
  • Ilmumisaeg: 08-Apr-2025
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691273778

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An authoritative introduction to the essential features of étale cohomology

A. Grothendiecks work on algebraic geometry is one of the most important mathematical achievements of the twentieth century. In the early 1960s, he and M. Artin introduced étale cohomology to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry but also in several different branches of number theory and in the representation theory of finite and p-adic groups. In this classic book, James Milne provides an invaluable introduction to étale cohomology, covering the essential features of the theory.

Milne begins with a review of the basic properties of flat and étale morphisms and the algebraic fundamental group. He then turns to the basic theory of étale sheaves and elementary étale cohomology, followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Milne proves the fundamental theorems in étale cohomologythose of base change, purity, Poincaré duality, and the Lefschetz trace formulaand applies these theorems to show the rationality of some very general L-series.
James S. Milne is professor emeritus of mathematics at the University of Michigan and recipient of the Steele Prize for Mathematical Exposition from the American Mathematical Society.