Muutke küpsiste eelistusi

E-raamat: Euro-Par 2019: Parallel Processing: 25th International Conference on Parallel and Distributed Computing, Gottingen, Germany, August 26-30, 2019, Proceedings

Edited by
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 25th International Conference on Parallel and Distributed Computing, Euro-Par 2019, held in Göttingen, Germany, in August 2019.





The 36 full papers presented in this volume were carefully reviewed and selected from 142 submissions. They deal with parallel and distributed computing in general, focusing on support tools and environments; performance and power modeling, prediction and evaluation; scheduling and load balancing; high performance architectures and compilers; data management, analytics and deep learning; cluster and cloud computing; distributed systems and algorithms; parallel and distributed programming, interfaces, and languages; multicore and manycore parallelism; theory and algorithms for parallel computation and networking; parallel numerical methods and applications; accelerator computing; algorithms and systems for bioinformatics; and algorithms and systems for digital humanities.  
Online Fault Classification in HPC Systems through Machine Learning.-
Accelerating Data-Dependence Profiling with Static Hints.- Multi-Valued
Expression Analysis for Collective Checking.-  Towards Portable Online
Prediction of Network Utilization using MPI-level Monitoring.- A Comparison
of Random Task Graph Generation Methods for Scheduling Problems.- Code Region
Characterization Using a Reduced Space of Hardware Counters.- Combining
checkpointing and data compression to accelerate adjoint-based optimization
problems.- Linear Time Algorithms for Multiple Cluster Scheduling and
Multiple Strip Packing.- Scheduling on Two Unbounded Resources with
Communication Costs.- Improving Fairness in a Large Scale HTC System Through
Workload Analysis and Simulation.- Contention-aware Task Scheduler for
Concurrent Hierarchical Operations.- Load-Balancing for Parallel Delaunay
Triangulations.- Design-Space Exploration with Multi-Objective Resource-Aware
Modulo Scheduling.- Implementing YewPar: a Framework for Parallel Tree
Search.- PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator
Clusters.- Enhancing the Programmability and Performance Portability of GPU
Tensor Operations.- Unified and Scalable Incremental Recommenders with
Consumed Item Packs.- Declarative Big Data Analysis for High-Energy Physics:
TOTEM Use Case.- Clustering as Approximation Method to Optimize Hydrological
Simulations.- YOLO: Speeding up VM and Docker Boot Time by reducing I/O
operations.- Celerity: High-level C++ for Accelerator Clusters.- Dataflow
Execution of Hierarchically Tiled Arrays.- Scalable FIFO Channels for
Programming via Communicating Sequential Processes.- TWA Ticket Locks
Augmented with a Waiting Array.- Enabling Resilience in Asynchronous
Many-Task Programming Models.- Avoiding Scalability Collapse by Restricting
Concurrency.- Graph Coloring using GPUs.- Featherlight Speculative Task
Parallelism.- One Table to Count Them All: Parallel Frequency Estimation on
Single-Board Computers.- Fine-grained MPI+OpenMP plasma simulations:
communication overlap with dependent tasks.- Parallel Adaptive Sampling with
almost no Synchronization.- Parallel Streaming Random Sampling.- Cholesky and
Gram-Schmidt Orthogonalization for Tall-and-Skinny QR Factorizations on
Graphic Processors.- Automatic exploration of reduced floating-point
representations in iterative methods.- Linear Systems Solvers for Distributed
Memory Machines with GPU Accelerators.- Radio-Astronomical Imaging: FPGAs vs
GPUs.