Muutke küpsiste eelistusi

E-raamat: Evolution Algebras and their Applications

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1921
  • Ilmumisaeg: 24-Dec-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540742845
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1921
  • Ilmumisaeg: 24-Dec-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540742845
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The author explores evolution algebras, which lie between algebras and dynamical systems. Readers learn the foundations of evolution algebras theory and its applications in non-Mendelian genetics and Markov chains. They’ll also discover evolution algebras’ connections with other mathematical fields, including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the Ihara-Selberg zeta function.

The author explores evolution algebras, which lie between algebras and dynamical systems. Readers learn the foundations of evolution algebras theory and its applications in non-Mendelian genetics and Markov chains. They'll also discover evolution algebras' connections with other mathematical fields, including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the Ihara-Selberg zeta function.

Arvustused

From the reviews:









"The book introduces a new class of nonassociative algebras, called evolution algebras, and discusses in detail many applications of evolution algebras in stochastic processes and genetics. The book under review is suitable both for graduate students and researchers with interest in the theoretical biology, genetics, Markov process, graph theory, and nonassociative algebras and their applications. The text contains a clear, detailed and self-contained exposition of evolution algebras."(Fouad Zitan, Zentralblatt MATH, Vol. 1136 (14), 2008)

Introduction
1(8)
Motivations
9(8)
Examples from Biology
9(3)
Asexual propagation
9(1)
Gametic algebras in asexual inheritance
10(1)
The Wright-Fisher model
11(1)
Examples from Physics
12(3)
Particles moving in a discrete space
12(1)
Flows in a discrete space (networks)
12(1)
Feynman graphs
13(2)
Examples from Topology
15(1)
Motions of particles in a 3-manifold
15(1)
Random walks on braids with negative probabilities
15(1)
Examples from Probability Theory
16(1)
Stochastic processes
16(1)
Evolution Algebras
17(36)
Definitions and Basic Properties
17(11)
Departure point
17(5)
Existence of unity elements
22(1)
Basic definitions
23(1)
Ideals of an evolution algebra
24(1)
Quotients of an evolution algebra
25(1)
Occurrence relations
26(1)
Several interesting identities
27(1)
Evolution Operators and Multiplication Algebras
28(8)
Evolution operators
29(1)
Changes of generator sets (Transformations of natural bases)
30(1)
``Rigidness'' of generator sets of an evolution algebra
31(1)
The automorphism group of an evolution algebra
32(1)
The multiplication algebra of an evolution algebra
33(1)
The derived Lie algebra of an evolution algebra
34(1)
The centroid of an evolution algebra
35(1)
Nonassociative Banach Algebras
36(3)
Definition of a norm over an evolution algebra
37(1)
An evolution algebra as a Banach space
38(1)
Periodicity and Algebraic Persistency
39(4)
Periodicity of a generator in an evolution algebra
39(3)
Algebraic persistency and algebraic transiency
42(1)
Hierarchy of an Evolution Algebra
43(10)
Periodicity of a simple evolution algebra
44(1)
Semidirect-sum decomposition of an evolution algebra
45(1)
Hierarchy of an evolution algebra
46(3)
Reducibility of an evolution algebra
49(4)
Evolution Algebras and Markov Chains
53(38)
A Markov Chain and Its Evolution Algebra
53(7)
Markov chains (discrete time)
53(1)
The evolution algebra determined by a Markov chain
54(2)
The Chapman--Kolmogorov equation
56(2)
Concepts related to evolution operators
58(1)
Basic algebraic properties of Markov chains
58(2)
Algebraic Persistency and Probabilistic Persistency
60(9)
Destination operator of evolution algebra Mx
60(4)
On the loss of coefficients (probabilities)
64(3)
On the conservation of coefficients (probabilities)
67(1)
Certain interpretations
68(1)
Algebraic periodicity and probabilistic periodicity
69(1)
Spectrum Theory of Evolution Algebras
69(7)
Invariance of a probability flow
69(1)
Spectrum of a simple evolution algebra
70(5)
Spectrum of an evolution algebra at zeroth level
75(1)
Hierarchies of General Markov Chains and Beyond
76(15)
Hierarchy of a general Markov chain
76(1)
Structure at the 0th level in a hierarchy
77(3)
1st structure of a hierarchy
80(1)
kth structure of a hierarchy
81(2)
Regular evolution algebras
83(3)
Reduced structure of evolution algebra Mx
86(1)
Examples and applications
87(4)
Evolution Algebras and Non-Mendelian Genetics
91(18)
History of General Genetic Algebras
91(2)
Non-Mendelian Genetics and Its Algebraic Formulation
93(3)
Some terms in population genetics
93(1)
Mendelian vs. non-Mendelian genetics
94(1)
Algebraic formulation of non-Mendelian genetics
95(1)
Algebras of Organelle Population Genetics
96(4)
Heteroplasmy and homoplasmy
96(2)
Coexistence of triplasmy
98(2)
Algebraic Structures of Asexual Progenies of Phytophthora infestans
100(9)
Basic biology of Phytophthora infestans
101(1)
Algebras of progenies of Phytophthora infestans
102(7)
Further Results and Research Topics
109(10)
Beginning of Evolution Algebras and Graph Theory
109(4)
Further Research Topics
113(3)
Evolution algebras and graph theory
113(1)
Evolution algebras and group theory, knot theory
114(1)
Evolution algebras and Ihara-Selberg zeta function
115(1)
Continuous evolution algebras
115(1)
Algebraic statistical physics models and applications
115(1)
Evolution algebras and 3-manifolds
116(1)
Evolution algebras and phylogenetic trees, coalescent theory
116(1)
Background Literature
116(3)
References 119(4)
Index 123