Muutke küpsiste eelistusi

E-raamat: Exact Methods in Low-dimensional Statistical Physics and Quantum Computing: Lecture Notes of the Les Houches Summer School: Volume 89, July 2008

Edited by (LPTMS, CNRS, Universite Paris Sud, Orsay, France), Edited by (SPhT, CEA, Saclay, France), Edited by (LPTMS, CNRS, University Paris Sud, Orsay, France), Edited by (LPTHE, Universite Paris VI, Paris, France), Edited by (SPhT, CEA, Saclay, France)
  • Formaat - PDF+DRM
  • Hind: 41,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the 21 chapters here, Jacobsen (theoretical physics, U. Paris Sud, France) et al. bring together physicists, mathematicians, and other scientists from North America and Europe who gave lectures on exact solutions in low-dimensional theoretical physics at the 89th session of Les Houches Summer School in Grenoble, France, held June through August 2008. The lecture notes address such concepts as the interplay between conformal field theory and stochastic Loewner evolution, Coulomb gas techniques, tiling models, dimers, the definition of models of random curves on a background of random triangulations, boundary conditions, quantum inverse scattering, spin chains, the interplay between integrable models and combinatorics, mass transport models of condensation in real space, quantum impurity problems, the physics of spin liquids, the quantum Hall effect, models of rotating Bose-Einstein condensates, and models of topological order with applications to quantum computing. There is no index. Annotation ©2010 Book News, Inc., Portland, OR (booknews.com)

Recent years have shown important and spectacular convergences between techniques traditionally used in theoretical physics and methods emerging from modern mathematics (combinatorics, probability theory, topology, algebraic geometry, etc). These techniques, and in particular those of low-dimensional statistical models, are instrumental in improving our understanding of emerging fields, such as quantum computing and cryptography, complex systems, and quantum fluids. This book sets these issues into a larger and more coherent theoretical context than is currently available. For instance, understanding the key concepts of quantum entanglement (a measure of information density) necessitates a thorough knowledge of quantum and topological field theory, and integrable models. To achieve this goal, the lectures were given by international leaders in the fields of exactly solvable models in low dimensional condensed matter and statistical physics.
List of participants
xix
PART I LONG LECTURES
1 Quantum impurity problems in condensed matter physics
3(62)
Ian Affleck
1.1 Quantum impurity problems and the renormalization group
4(8)
1.2 Multichannel Kondo model
12(12)
1.3 Quantum dots: Experimental realizations of one-and two-channel Kondo models
24(9)
1.4 Quantum impurity problems in Luttinger liquids
33(8)
1.5 Quantum impurity entanglement entropy
41(7)
1.6 Y-junctions of quantum wires
48(6)
1.7 Boundary-condition-changing operators and the X-ray edge singularity
54(8)
1.8 Conclusions
62(1)
References
63(2)
2 Conformal field theory and statistical mechanics
65(34)
John Cardy
2.1 Introduction
66(1)
2.2 Scale invariance and conformal invariance in critical behavior
66(4)
2.3 The role of the stress tensor
70(6)
2.4 Radial quantization and the Virasoro algebra
76(4)
2.5 CFT on the cylinder and torus
80(6)
2.6 Height models, loop models, and Coulomb gas methods
86(4)
2.7 Boundary conformal field theory
90(8)
2.8 Further reading
98(1)
3 The quantum Hall effect
99(2)
F. Duncan
M. Haldane
4 Topological phases and quantum computation
101(26)
Alexei Kitaev
4.1 Introduction: The quest for protected qubits
102(1)
4.2 Topological phenomena in 1D: Boundary modes in the Majorana chain
103(5)
4.3 The two-dimensional toric code
108(3)
4.4 Abelian anyons and quasiparticle statistics
111(6)
4.5 The honeycomb lattice model
117(8)
References
125(2)
5 Four lectures on computational statistical physics
127(32)
Werner Krauth
5.1 Sampling
128(7)
5.2 Classical hard-sphere systems
135(6)
5.3 Quantum Monte Carlo simulations
141(7)
5.4 Spin systems: Samples and exact solutions
148(8)
References
156(3)
6 Loop models
159(38)
Bernard Nienhuis
6.1 Historical perspective
160(1)
6.2 Brief summary of renormalization theory
161(5)
6.3 Loop models
166(10)
6.4 The Coulomb gas
176(17)
6.5 Summary and perspective
193(1)
References
194(3)
7 Lectures on the integrability of the six-vertex model
197(70)
Nicolai Reshetikhin
7.1 Introduction
198(1)
7.2 Classical integrable spin chains
198(5)
7.3 Quantization of local integrable spin chains
203(10)
7.4 The spectrum of transfer matrices
213(3)
7.5 The thermodynamic limit
216(2)
7.6 The six-vertex model
218(8)
7.7 The six-vertex model on a torus in the thermodynamic limit
226(2)
7.8 The six-vertex model at the free-fermionic point
228(6)
7.9 The free energy of the six-vertex model
234(8)
7.10 Some asymptotics of the free energy
242(4)
7.11 The Legendre transform of the free energy
246(2)
7.12 The limit shape phenomenon
248(6)
7.13 Semiclassical limits
254(2)
7.14 The free-fermionic point and dimer models
256(2)
7.A Appendix
258(6)
References
264(3)
8 Mathematical aspects of 2D phase transitions
267(4)
Wendelin Werner
PART II SHORT LECTURES
9 Numerical simulations of quantum statistical mechanical models
271(38)
Fabien Alet
9.1 Introduction
272(1)
9.2 A rapid survey of methods
273(6)
9.3 Path integral and related methods
279(2)
9.4 Classical worm algorithm
281(7)
9.5 Projection methods
288(5)
9.6 Valence bond projection method
293(12)
References
305(4)
10 Rapidly rotating atomic Bose gases
309(30)
Nigel R. Cooper
10.1 Introduction
310(4)
10.2 Rapidly rotating atomic Bose gases
314(7)
10.3 Strongly correlated phases
321(13)
10.4 Conclusions
334(1)
References
335(4)
11 The quantum Hall effect
339(2)
Jurg Frohlich
12 The dimer model
341(22)
Richard Kenyon
12.1 Overview
342(1)
12.2 Dimer definitions
343(5)
12.3 Gibbs measures
348(1)
12.4 Kasteleyn theory
349(3)
12.5 Partition function
352(3)
12.6 General graphs
355(6)
References
361(2)
13 Boundary loop models and 2D quantum gravity
363(44)
Ivan Kostov
13.1 Introduction
364(1)
13.2 Continuous world-sheet description: Liouville gravity
364(9)
13.3 Discrete models of 2D gravity
373(15)
13.4 Boundary correlation functions
388(13)
13.A Appendices
401(4)
References
405(2)
14 Real-space condensation in stochastic mass transport models
407(24)
Satya N. Majumdar
14.1 Introduction
408(1)
14.2 Three simple mass transport models
409(5)
14.3 A generalized mass transport model
414(4)
14.4 Condensation in mass transport models with a factorizable steady state
418(6)
14.5 Interpretation as sums and extremes of random variables
424(1)
14.6 Conclusion
425(2)
References
427(4)
15 Quantum spin liquids
431(24)
Gregoire Misguich
15.1 Introduction: Band and Mott insulators
432(1)
15.2 Some materials without magnetic order at T = 0
433(2)
15.3 Spin wave theory, zero modes, and breakdown of the 1/S expansion
435(4)
15.4 Lieb-Schultz-Mattis theorem, and Hastings's extension to D > 1: Ground state degeneracy in gapped spin liquids
439(3)
15.5 Anderson's short-range resonating-valence-bond picture
442(2)
15.6 Schwinger bosons, large-N limit, and Z2 topological phase
444(9)
References
453(2)
16 Superspin chains and supersigma models: A short introduction
455(28)
Hubert Saleur
16.1 Introduction
456(1)
16.2 Some mathematical aspects: The gl(1/1) case
457(7)
16.3 The two simplest sigma models
464(5)
16.4 From gl(N---N) spin chains to sigma models
469(7)
16.5 A conformal sigma model at c = -2
476(4)
16.6 Conclusions
480(1)
References
480(3)
17 Integrability and combinatorics: Selected topics
483(46)
Paul Zinn-Justin
17.1 Free-fermionic methods
484(16)
17.2 The six-vertex model
500(12)
17.3 Razumov-Stroganov conjecture
512(11)
References
523(6)
PART III SEMINARS
18 A rigorous perspective on Liouville quantum gravity and the KPZ relation
529(34)
Bertrand Duplantier
18.1 Introduction
530(8)
18.2 GFF regularization
538(5)
18.3 Random measure and Liouville quantum gravity
543(2)
18.4 Proof of the KPZ relation
545(3)
18.5 Boundary KPZ relation
548(5)
18.6 Liouville quantum duality
553(4)
References
557(6)
19 Topologically protected qubits based on Josephson junction arrays
563(40)
Mikhail V. Feigel'Man
19.1 Introduction
564(2)
19.2 Topological superconductor
566(1)
19.3 Ground state, excitations, and topological order
567(4)
19.4 Effect of physical perturbations
571(3)
19.5 Topological insulator
574(5)
19.6 Quantum manipulations
579(2)
19.7 Physical properties of small arrays
581(1)
19.8 XZ array
582(15)
19.9 Rhombus chain: Quantitative analysis
597(3)
19.10 Recent developments
600(1)
19.11 Conclusion
601(1)
References
601(2)
20 On some quantum Hall states with negative flux
603(12)
Thierry Jolicoeur
20.1 Introduction
604(1)
20.2 Classical hierarchies
605(8)
References
613(2)
21 Supersolidity and what soluble models can tell us about it
615
David Thouless
21.1 Introduction
616(1)
21.2 Some old theory
616(1)
21.3 Some recent experimental results
617(1)
21.4 Classical and nonclassical inertia
618(1)
21.5 One-dimensional models
619(3)
21.6 Two-dimensional flow
622(1)
21.7 Conclusions
623(1)
References
623