Muutke küpsiste eelistusi

E-raamat: Experimental Techniques in Magnetism and Magnetic Materials

  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jan-2023
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009276559
  • Formaat - PDF+DRM
  • Hind: 142,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jan-2023
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009276559

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is written to introduce experimental magnetism in a comprehensive manner to advanced undergraduate, postgraduate, and doctoral students pursuing studies in physics, material sciences, and engineering. It is an excellent resource providing an overview of the various experimental techniques in magnetism and magnetic materials. The text is partitioned into three parts. Part I deals with a brief history of magnetism and magnetic materials along with their role in modern society. A concise account of their current technological applications is also provided. Part II focusses on the basic phenomena of magnetism. Part III consists of chapters discussing a variety of experimental practices needed to study the microscopic as well as macroscopic aspects of different kinds of magnetic phenomena and materials.

This book is designed for advanced undergraduate, postgraduate, and doctoral students of physics, material sciences, and engineering. It aims to provide an exposure to the wide spectrum of experimental techniques required to understand various aspects of magnetism and magnetic materials.

Muu info

A book for advanced undergraduate, postgraduate, and doctoral students of physics, material sciences, and engineering.
Preface xiii
I Introduction to Magnetism and Magnetic Materials
1(18)
1 A Short History of Magnetism and Magnetic Materials
3(10)
2 Role of Magnetism and Magnetic Materials in Modern Society
13(6)
II Basic Phenomenology of Magnetism
19(70)
3 Magnetic Moment and the Effect of Crystal Environment
23(26)
3.1 Magnetic Moment and Magnetization
23(3)
3.1.1 Magnetic Moment
23(2)
3.1.2 Magnetization
25(1)
3.2 Classical Electromagnetism, Magnetic Moment, and Angular Momentum
26(4)
3.3 Precession of Magnetic Moment
30(1)
3.4 Magnetization, Magnetic Field, and Magnetic Susceptibility
31(1)
3.5 Orbital and Spin Angular Momentum of Electron and Magnetic Moment
32(1)
3.6 Magnetism of Isolated Atoms and Ions
33(1)
3.7 Diamagnetism
34(3)
3.8 Paramagnetism
37(5)
3.8.1 Classical theory of paramagnetism
37(3)
3.8.2 Quantum theory of paramagnetism
40(1)
3.8.3 Van Vleck paramagnetism
41(1)
3.9 Ground State of Ions and Hund's Rules
42(2)
3.9.1 Fine structure
42(1)
3.9.2 Hund's rules
43(1)
3.9.3 Russel--Saunders coupling versus →j--→j coupling
43(1)
3.10 Effect of Crystal Environment on Magnetic Ions
44(5)
3.10.1 Crystal fields and their origin
44(3)
3.10.2 Quenching of orbitals
47(1)
3.10.3 Jahn--Teller effect
48(1)
4 Exchange Interactions and Magnetism in Solids
49(14)
4.1 Coupling between Spins
49(2)
4.2 Origin of Exchange Interactions
51(3)
4.3 Physical Meaning of Exchange Energy
54(1)
4.4 Direct Exchange
55(1)
4.5 Indirect Exchange in Insulating Solids
55(7)
4.5.1 Superexchange
55(4)
4.5.2 Double exchange
59(2)
4.5.3 Anisotropic exchange interaction: Dzyaloshinski--Moriya interaction
61(1)
4.6 Indirect Exchange in Metals
62(1)
5 Magnetically Ordered States in Solids
63(26)
5.1 Ferromagnetism
63(5)
5.1.1 Magnetic susceptibility in a ferromagnet
67(1)
5.2 Antiferromagnetism
68(3)
5.2.1 Magnetic susceptibility in an antiferromagnet
69(2)
5.3 Ferrimagnetism
71(1)
5.4 Helical Magnetic Order
71(1)
5.5 Spin-Glass Order
72(2)
5.6 Spin Waves in Ferromagnets
74(5)
5.7 Domains and Domain Wall
79(3)
5.8 Magnetic Skyrmion
82(1)
5.9 Magnetic Anisotropy
83(2)
5.10 Magnetization Process in Ferromagnets
85(4)
III Experimental Techniques in Magnetism
89(230)
6 Conventional Magnetometry
93(32)
6.1 Force Method
94(8)
6.1.1 Gouy and Faraday balance
94(2)
6.1.2 Alternating gradient magnetometer
96(3)
6.1.3 Cantilever beam magnetometer
99(3)
6.2 Induction Method
102(15)
6.2.1 Vibrating sample magnetometer
104(4)
6.2.2 Superconducting quantum interference device magnetometer
108(7)
6.2.3 SQUID-VSM
115(1)
6.2.4 Extraction magnetometer
116(1)
6.3 AC Susceptibility
117(5)
6.4 Summary
122(3)
7 Magnetic Resonance and Relaxation
125(44)
7.1 Nuclear Magnetic Resonance
126(10)
7.2 Electron Paramagnetic Resonance
136(9)
7.3 Ferromagnetic Resonance
145(6)
7.4 Muon Spin Rotation
151(11)
7.5 Mossbauer Spectroscopy
162(4)
7.6 Summary
166(3)
8 Optical Methods
169(22)
8.1 Magneto-optical Effects
169(9)
8.1.1 Principles of magneto-optical effects
170(2)
8.1.2 Experimental methods
172(6)
8.2 Scanning Near-field Optical Microscopy
178(4)
8.2.1 Principle of scanning near-field optical microscope
178(2)
8.2.2 Magneto-optical measurement using scanning near-field optical microscope
180(2)
8.3 Brillouin Light Scattering
182(7)
8.3.1 Principles of Brillouin light scattering
183(1)
8.3.2 Experimental method for Brillouin light scattering
184(5)
8.4 Summary
189(2)
9 Neutron Scattering
191(46)
9.1 Neutron Sources and Neutron Scattering Facilities
193(3)
9.2 Basics of Neutron Scattering
196(15)
9.2.1 Neutron cross sections
197(1)
9.2.2 Conservation of energy and momentum
198(1)
9.2.3 Master formula for neutron scattering
198(3)
9.2.4 Nuclear scattering
201(3)
9.2.5 Magnetic scattering
204(2)
9.2.6 Classification of magnetic structures
206(5)
9.3 Neutron Scattering Experiments
211(6)
9.3.1 Neutron powder diffraction
214(3)
9.4 Single-Crystal Experiments
217(1)
9.5 Polarized Neutron Scattering
218(1)
9.6 Magnetic Small-Angle Neutron Scattering
219(4)
9.7 Inelastic Neutron Scattering
223(6)
9.8 Polarized Neutron Reflectometry
229(4)
9.9 Summary
233(4)
10 X-ray Scattering
237(22)
10.1 Magnetic and Resonant X-ray Diffraction
238(17)
10.1.1 Classical formalism of magnetic X-ray scattering
239(5)
10.1.2 Quantum mechanical theory of magnetic and resonant X-ray scattering
244(3)
10.1.3 Resonant X-ray scattering
247(3)
10.1.4 X-ray magnetic circular dichroism and X-ray magnetic linear dichroism
250(5)
10.2 Summary
255(4)
11 Microscopic Magnetic Imaging Techniques
259(42)
11.1 Electron-Optical Methods
259(20)
11.1.1 Scanning electron microscopy
260(8)
11.1.2 Transmission electron microscopy
268(11)
11.2 Imaging with Scanning Probes
279(11)
11.2.1 Magnetic force microscopy
280(4)
11.2.2 Spin-polarized scanning tunneling microscopy
284(3)
11.2.3 Scanning Hall probe and scanning SQUID microscopy
287(3)
11.3 Magnetic Imaging Using Synchrotron Radiation Sources
290(7)
11.3.1 Scanning X-ray microscopy
291(1)
11.3.2 Transmission X-ray microscopy
292(2)
11.3.3 X-ray photoelectron microscopy
294(3)
11.4 Summary
297(4)
12 Nano-Scale Magnetometry with Nitrogen Vacancy Centre
301(18)
12.1 Physics of the Nitrogen-Vacancy (NV) Centre in Diamond
302(3)
12.2 A Brief Introduction to the Principle of NV Magnetometry
305(1)
12.3 Diamond Materials and Microscopy
306(2)
12.4 Optically Detected Magnetic Resonance
308(1)
12.5 NV Magnetometers
309(8)
12.5.1 Samples for NV Magnetometry
309(1)
12.5.2 DC magnetometer
310(2)
12.5.3 AC Magnetometer
312(1)
12.5.4 Sensitivity of NV magnetometers
313(3)
12.5.5 Some experimental results
316(1)
12.6 Summary
317(2)
Appendix A Magnetic Fields and Their Generation
319(6)
A.1 Steady Field
319(2)
A.2 Pulsed-Field
321(4)
Appendix B Units in Magnetism
325(4)
Appendix C Demagnetization Field and Demagnetization Factor
329(10)
C.1 Phenomenology
329(6)
C.2 Experimental aspects
335(4)
Index 339
S. B. Roy is emeritus professor at the UGC-DAE Consortium for Scientific Research, Indore, India. His research includes experimental and theoretical aspects of magnetism and superconductivity. He worked as a post-doctoral researcher in Imperial College of Science and Technology, London, UK and University of Florida, Gainesville, USA during 19861991. He has published more than 200 research papers in international peer-reviewed journals and holds two US patents. He received Homi Bhabha Science Technology Award of Department of Atomic Energy, India in 2006. He was elected Fellow of Institute of Physics, UK in 2014.