Muutke küpsiste eelistusi

E-raamat: Experiments and Modeling in Cognitive Science: MATLAB, SPSS, Excel and E-Prime

(Professor, Department of Psychology, Cote d'Azur University), (Assistant Professor, Department of Psychology, Cote d'Azur University)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Nov-2018
  • Kirjastus: ISTE Press Ltd - Elsevier Inc
  • Keel: eng
  • ISBN-13: 9780081027974
  • Formaat - EPUB+DRM
  • Hind: 156,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Nov-2018
  • Kirjastus: ISTE Press Ltd - Elsevier Inc
  • Keel: eng
  • ISBN-13: 9780081027974

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Software Simulation and Modeling in Psychology: MATLAB, SPSS, Excel and E-Prime describes all the stages of psychology experimentation, from the manipulation of factors, to statistical analysis, data modeling, and automated stimuli creation. The book shows how software can help automate various stages of the experiment for which operations may quickly become repetitive. For example, it shows how to compile data files (instead of opening files one by one to copy and paste), generate stimuli (instead of drawing one by one in a drawing software), and transform and recode tables of data.

This type of modeling in psychology helps determine if a model fits the data, and also demonstrates that the algorithmic is not only useful, but essential for modeling data.

  • Covers the entire process of experimenting, from designing an experiment, to modeling the data
  • Shows how software can help automate various stages of the experiment for which operations may quickly become repetitive
  • Contains sections on how to compile data files (instead of opening files one by one to copy and paste) and generate stimuli (instead of drawing one by one in a drawing software)
Preface xi
Part 1 Experiments, Models, Simulations
1(96)
Chapter 1 Principles of Modeling
3(20)
1.1 Experiments, models and simulations
3(9)
1.2 Principles of modeling
12(5)
1.3 Modeling vs. conceptualization
17(6)
Chapter 2 Modeling and Simulation
23(18)
2.1 Classical prediction of the serial position curve
23(1)
2.2 Alternative explanation based on the interference phenomenon
24(16)
2.3 Going further
40(1)
Chapter 3 Adjustment of the Model to the Data
41(24)
3.1 Categorization by exemplars
41(5)
3.2 Categorization by exemplar, with MATLAB® calculations
46(6)
3.3 Adjustment functions (RMSE and likelihood)
52(10)
3.4 From adjustment to model selection
62(3)
Chapter 4 Introduction to Programming in MATLAB®
65(32)
4.1 Programming basics: getting started
65(4)
4.1.1 Program styles
65(1)
4.1.2 Length of programs
65(1)
4.1.3 Emergency stop, stop a program from running
66(1)
4.1.4 Initiation
66(1)
4.1.5 Help
67(1)
4.1.6 Variable reset and screen reset
67(1)
4.1.7 Constants
68(1)
4.1.8 Formats
68(1)
4.2 Matrices
69(7)
4.2.1 Sum and randn commands
71(1)
4.2.2 Manipulating matrices
72(4)
4.3 Basic functions
76(4)
4.3.1 Find function
76(1)
4.3.2 Size and length functions
77(1)
4.3.3 Random numbers distributed randomly: rand function
78(1)
4.3.4 Normally distributed random numbers: randn function
79(1)
4.4 Comparison tests
80(1)
4.5 Logical operators
81(1)
4.6 Text or character strings
81(3)
4.6.1 Character strings OR character matrices
82(2)
4.7 Cells and structures
84(1)
4.8 Control structures
85(1)
4.9 Nested loops
85(4)
4.10 Create functions
89(3)
4.11 Summary
92(1)
4.12 Programming tips in MATLAB®
93(4)
Part 2 Experimentation
97(100)
Chapter 5 Principles of Experimentation Organization and Experimental Reasoning
99(14)
5.1 Experimental effect
99(1)
5.2 Generalities
100(2)
5.3 Participants
102(2)
5.4 Location and conditions
104(1)
5.5 Informed consent
104(1)
5.6 Introductory reminder regarding the terminology of experimental design
105(4)
5.7 Group denomination
109(1)
5.8 Order effects, and rank effects in repeated measures
109(1)
5.9 Going further: order and rank effects in repeated measures
109(4)
Chapter 6 Building Experimental Conditions from Random Draws or Permutations
113(18)
6.1 Creation of experimental groups
113(1)
6.2 Randomly counterbalanced series of zeros and ones
114(2)
6.3 Random series of experimental trials
116(2)
6.4 Draw of conditions or participants without replacement
118(1)
6.5 Counterbalancing experimental conditions
118(3)
6.6 Randomization of several word lists by subject
121(1)
6.7 Choice and counterbalancing of experimental conditions
122(2)
6.8 Creation of permuted item lists for each subject
124(3)
6.9 Creation of exhaustive lists and random draws
127(4)
Chapter 7 Creating Stimuli Digitally
131(26)
7.1 Overlaying stimuli
131(3)
7.2 Create and combine various stimuli
134(20)
7.2.1 Ten large stimuli of increasing size using linspace
134(3)
7.2.2 A single cube
137(1)
7.2.3 Creating simple image stimuli, then varying colors of these stimuli
138(7)
7.2.4 Generate color variations from existing images
145(2)
7.2.5 Creating windows of stimuli to be loaded in other experimentation software
147(6)
7.2.6 Moving stimuli
153(1)
7.3 Resources
154(3)
Chapter 8 Experimenting with Psychtoolbox (and Others)
157(40)
8.1 Introduction: Psychtoolbox (Psychophysics toolbox) or E-Prime?
157(1)
8.2 MATLAB® experiments with the GUI
158(2)
8.3 MATLAB® experiments with Psychtoolbox
160(18)
8.3.1 Pricing, compatibility and authors
160(1)
8.3.2 Stopping a blocked program
160(1)
8.3.3 Familiarization with Psychtoolbox
161(1)
8.3.4 Measuring time
162(1)
8.3.5 Taking information from the screen
162(1)
8.3.6 Displaying a stimulus
163(1)
8.3.7 Displaying text
164(1)
8.3.8 Displaying a rectangle in full screen
165(2)
8.3.9 A mini experiment: memorizing letter sequences
167(7)
8.3.10 Another mini experiment: color wheel memory
174(4)
8.4 E-Prime
178(19)
8.4.1 E-Studio
178(2)
8.4.2 General properties of the experiment
180(1)
8.4.3 Toolbox
181(4)
8.4.4 E-Merge
185(1)
8.4.5 E-DataAid
186(1)
8.4.6 E-Recovery
187(1)
8.4.7 E-Run
187(1)
8.4.8 Tips for E-Prime
188(1)
8.4.9 Example of a switching task with E-Prime
188(9)
Part 3 Analysis and Modeling
197(84)
Chapter 9 Analyzing Data: Import, Transformation, Compilation, Restructuring, Aggregation and Use of Statisticstoolbox
199(36)
9.1 Importing and transforming
199(7)
9.2 Compiling data files
206(3)
9.3 Extracting digital information from a file that is not organized as a table
209(5)
9.4 Import, combine and manipulate data in a table fonnat
214(4)
9.5 Restructuring and aggregating data in MATLAB®
218(6)
9.6 Restructuring and aggregating data with Excel or SPSS
224(11)
Chapter 10 Introduction to Bayesian Analysis
235(32)
10.1 Introduction
235(2)
10.2 Conditional release
237(1)
10.3 Bayes' law
238(1)
10.4 Principle of Bayesian inference
239(6)
10.5 Updating hypotheses
245(3)
10.6 Statistics: going past rejecting the null hypothesis
248(2)
10.7 What alternative for an implausible null hypothesis?
250(4)
10.8 More complex distributions for calculating whether toast lands more often on the buttered side
254(6)
10.9 Model selection
260(4)
10.9.1 Bayesian tests with JASP
261(3)
10.10 Cognitive psychology
264(3)
Chapter 11 Complex and Original Figures
267(14)
11.1 Correlation matrix with original diagonal
267(2)
11.2 Dispersion diagram with cohorts
269(2)
11.3 Double Y axis graphs
271(2)
11.4 Multiple juxtaposed figures
273(5)
11.5 Adding text
278(3)
References 281(6)
Index 287
Fabien Mathy is a professor in the department of Psychology at University Côte d'Azur, and researcher at the laboratory Bases, Corpus, Langage of the CNRS. After being head of the Department of Psychology, he is currently appointed director of a doctoral program and head of the Cognitive Science & Computation program at the Maison des Sciences de l'Homme et de la Société Sud-Est in Nice, France. He teaches psychology and cognitive science to show in particular how artificial intelligence and psychology can combine to offer adequate models of cognitive processes. HIs main research interest is the relationship between learning, memory, and intelligence and his current research explores the growth of immediate memory capacity across age. He has been the recipient of two grants from the Agence Nationale de la Recherche and one IDEX (Initiative d'excellence) grant and he has been a fellow of the Psychonomic Society since 2010. Mustapha Chekaf is a former PhD student of Fabien Mathy, currently assistant professor in the department of Psychology at University Côte d'Azur, and postdoctoral researcher at the laboratory Bases, Corpus, Langage of the CNRS. Mustapha Chekaf and Fabien Mathy have published together three research articles in peer-reviewed journals in cognitive psychology. His current research explores the capacity of immediate memory in adults and the training of working memory based on physical activities.