Muutke küpsiste eelistusi

E-raamat: Explainable and Interpretable Models in Computer Vision and Machine Learning

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.

Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision.   

 This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following:

 

·         Evaluation and Generalization in Interpretable Machine Learning

·         Explanation Methods in Deep Learning

·         Learning Functional Causal Models with Generative Neural Networks

·         Learning Interpreatable Rules for Multi-Label Classification

·         Structuring Neural Networks for More Explainable Predictions

·         Generating Post Hoc Rationales of Deep Visual Classification Decisions

·         Ensembling Visual Explanations

·         Explainable Deep Driving by Visualizing Causal Attention

·         Interdisciplinary Perspective on Algorithmic Job Candidate Search

·         Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions

·         Inherent Explainability Pattern Theory-based Video Event Interpretations


1 Considerations for Evaluation and Generalization in Interpretable
Machine Learning.- 2 Explanation Methods in Deep Learning: Users, Values,
Concerns and Challenges.- 3 Learning Functional Causal Models with Generative
Neural Networks.- 4 Learning Interpretable Rules for Multi-label
Classification.- 5 Structuring Neural Networks for More Explainable
Predictions.- 6 Generating Post-Hoc Rationales of Deep Visual Classification
Decisions.- 7 Ensembling Visual Explanations.- 8 Explainable Deep Driving by
Visualizing Causal Action.- 9 Psychology Meets Machine Learning:
Interdisciplinary Perspectives on Algorithmic Job Candidate Screening.- 10
Multimodal Personality Trait Analysis for Explainable Modeling of Job
Interview Decisions.- 11 On the Inherent Explainability of Pattern
Theory-based Video Event Interpretations.