Muutke küpsiste eelistusi

E-raamat: Explainable Machine Learning for Geospatial Data Analysis: A Data-Centric Approach

(AI.Geolabs, Machida, Tokyo, Japan)
  • Formaat: 280 pages
  • Ilmumisaeg: 06-Dec-2024
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781040252512
  • Formaat - EPUB+DRM
  • Hind: 143,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 280 pages
  • Ilmumisaeg: 06-Dec-2024
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781040252512

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Explainable AI (XAI), a subfield of AI, is focused on providing complex AI models that are understandable to humans. This book highlights and explains details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric explainable machine learning approach for obtaining new insights from geospatial data. It presents the opportunities, challenges, and gaps in the machine and deep learning approaches for geospatial data analysis and how they are applied to solve various environmental problems in land cover changes. The author includes guidelines and code scripts (R, Python) valuable for practical readers"--

This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric explainable machine learning approach for obtaining new insights from geospatial data analysis and how they are applied to solve various environmental problems from forestry to climate change.



Explainable machine learning (XML), a subfield of AI, is focused on making complex AI models understandable to humans. This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric, explainable machine learning approach to obtain new insights from geospatial data. It presents the opportunities, challenges, and gaps in the machine and deep learning approaches for geospatial data analysis and how they are applied to solve various environmental problems in land cover changes and in modeling forest canopy height and aboveground biomass density. The author also includes guidelines and code scripts (R, Python) valuable for practical readers.

 Features

  • Data-centric explainable machine learning (ML) approaches for geospatial data analysis.
  • The foundations and approaches to explainable ML and deep learning.
  • Several case studies from urban land cover and forestry where existing explainable machine learning methods are applied.
  • Descriptions of the opportunities, challenges, and gaps in data-centric explainable ML approaches for geospatial data analysis.
  • Scripts in R and python to perform geospatial data analysis, available upon request.

This book is an essential resource for graduate students, researchers, and academics working in and studying data science and machine learning, as well as geospatial data science professionals using GIS and remote sensing in environmental fields.

Part I: Introduction.
1. Challenges and Opportunities. Part II:
Foundations.
2. An Introduction to Explainable Machine Learning.
3.
Approaches to Explainable Machine Learning.
4. Approaches to Explainable Deep
Learning.
5. Landslide Susceptibility Modeling Using a Logistic Regression
Model. Part III: Techniques and Applications.
6. Urban Land Cover
Classification Using Earth Observation (EO) Data and Machine Learning Models.
7. Modeling Forest Canopy Height Using Earth Observation (EO) Data and
Machine Learning Models.
8. Modeling Aboveground Biomass Density Using Earth
Observation (EO) Data and Machine Learning Models.
9. Explainable Deep
Learning for Mapping Building Footprints Using High-Resolution Imagery.
10.
Towards Explainable AI and Data-Centric Approaches for Geospatial Data
Analysis.
11. Appendix.
Courage Kamusoko is an independent geospatial consultant based in Japan. His expertise includes land-use/cover change modeling and the design and implementation of geospatial database management systems. His primary research involves analyses of remotely sensed images, land-use/cover modeling, modeling aboveground biomass, machine learning, and deep learning. In addition to his focus on geospatial research and consultancy, he has dedicated time to teaching practical machine learning for geospatial data analysis and modeling.