Muutke küpsiste eelistusi

E-raamat: Explainable and Transparent AI and Multi-Agent Systems: 5th International Workshop, EXTRAAMAS 2023, London, UK, May 29, 2023, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume LNCS 14127 constitutes the refereed proceedings of the 5th International Workshop, EXTRAAMAS 2023, held in London, UK, in May 2023.  The 15 full papers presented together with 1 short paper were carefully reviewed and selected from 26 submissions. The workshop focuses on Explainable Agents and multi-agent systems; Explainable Machine Learning; and Cross-domain applied XAI.





 
Explainable Agents and multi-agent systems.- Mining and Validating
Belief-based Agent Explanations.- Evaluating a mechanism for explaining BDI
agent behaviour.- A General-Purpose Protocol for Multi-Agent based
Explanations.- Dialogue Explanations for Rules-based AI Systems.- Estimating
Causal Responsibility for Explaining Autonomous Behavior.- Explainable
Machine Learning.- The Quarrel of Local Post-hoc Explainers for Moral Values
Classification in Natural Language Processing.- Bottom-Up and Top-Down
Workflows for Hypercube- and Clustering-based Knowledge
Extractors.- Imperative Action Masking for Safe Exploration in Reinforcement
Learning.- Reinforcement Learning in Cyclic Environmental Change for
Non-Communicative Agents: A Theoretical Approach.- Inherently Interpretable
Deep Reinforcement Learning through Online Mimicking.- Counterfactual,
Contrastive, and Hierarchical Explanations with Contextual Importance and
Utility.- Cross-domain applied XAI.- Explanation Generation via
Decompositional Rules Extraction for Head and Neck Cancer
Classification.- Metrics for Evaluating Explainable Recommender
Systems.- Leveraging Imperfect Explanations for Plan Recognition
Problems.- Reinterpreting Vulnerability to Tackle Deception in
Principles-Based XAI for Human-Computer Interaction.- Using Cognitive Models
and Wearables to Diagnose and Predict Dementia Patient Behaviour.