Preface |
|
xv | |
1 A Brief Introduction |
|
1 | (9) |
|
1.1 A Note on Exploratory Data Analysis, |
|
|
3 | (1) |
|
1.2 Computing Considerations and Software, |
|
|
4 | (1) |
|
1.3 A Brief Outline of the Book, |
|
|
5 | (1) |
|
1.4 Data Sets and Case Studies, |
|
|
6 | (4) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.4.5 The Behavioral Study Data, |
|
|
8 | (1) |
|
1.4.6 The Spiked-In Data, |
|
|
8 | (1) |
|
|
8 | (1) |
|
1.4.8 The Breast Cancer Data, |
|
|
8 | (1) |
|
1.4.9 Platinum Spike Data Set, |
|
|
9 | (1) |
|
1.4.10 Human Epidermal Squamous Carcinoma Cell Line A431 Experiment, |
|
|
9 | (1) |
|
1.4.11 Note: Public Repositories of Microarray Data, |
|
|
9 | (1) |
2 Genomics Basics |
|
10 | (15) |
|
|
10 | (1) |
|
2.2 Deoxyribonucleic Acid, |
|
|
11 | (1) |
|
|
12 | (2) |
|
2.4 Hybridization Assays and Other Laboratory Techniques, |
|
|
14 | (2) |
|
|
16 | (1) |
|
2.6 Genome Variations and Their Consequences, |
|
|
17 | (2) |
|
|
19 | (1) |
|
2.8 The Role of Genomics in Pharmaceutical Research and Clinical Practice, |
|
|
19 | (3) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
3 Microarrays |
|
25 | (14) |
|
3.1 Types of Microarray Experiments, |
|
|
26 | (4) |
|
3.1.1 Experiment Type 1: Tissue-Specific Gene Expression, |
|
|
26 | (1) |
|
3.1.2 Experiment Type 2: Developmental Genetics, |
|
|
26 | (1) |
|
3.1.3 Experiment Type 3: Genetic Diseases, |
|
|
27 | (1) |
|
3.1.4 Experiment Type 4: Complex Diseases, |
|
|
28 | (1) |
|
3.1.5 Experiment Type 5: Pharmacological Agents, |
|
|
28 | (1) |
|
3.1.6 Experiment Type 6: Plant Breeding, |
|
|
29 | (1) |
|
3.1.7 Experiment Type 7: Environmental Monitoring, |
|
|
29 | (1) |
|
3.2 A Very Simple Hypothetical Microarray Experiment, |
|
|
30 | (1) |
|
3.3 A Typical Microarray Experiment, |
|
|
31 | (4) |
|
3.3.1 Microarray Preparation, |
|
|
32 | (1) |
|
3.3.2 Sample Preparation, |
|
|
33 | (1) |
|
3.3.3 The Hybridization Step, |
|
|
33 | (1) |
|
3.3.4 Scanning the Microarray, |
|
|
34 | (1) |
|
3.3.5 Interpreting the Scanned Image, |
|
|
34 | (1) |
|
3.4 Multichannel cDNA Microarrays, |
|
|
35 | (1) |
|
3.5 Oligonucleotide Microarrays, |
|
|
36 | (1) |
|
|
37 | (1) |
|
3.7 Confirmation of Microarray Results, |
|
|
37 | (1) |
|
Supplementary Reading and Electronic References, |
|
|
37 | (2) |
4 Processing the Scanned Image |
|
39 | (21) |
|
4.1 Converting the Scanned Image to the Spotted Image, |
|
|
39 | (3) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (7) |
|
4.2.1 Visualizing the Spotted Image, |
|
|
43 | (1) |
|
4.2.2 Numerical Evaluation of Array Quality, |
|
|
44 | (1) |
|
|
45 | (1) |
|
4.2.4 Spatial Randomness, |
|
|
46 | (1) |
|
4.2.5 Quality Control of Arrays, |
|
|
47 | (1) |
|
4.2.6 Assessment of Spot Quality, |
|
|
48 | (1) |
|
4.3 Adjusting for Background, |
|
|
49 | (4) |
|
4.3.1 Estimating the Background, |
|
|
49 | (3) |
|
4.3.2 Adjusting for the Estimated Background, |
|
|
52 | (1) |
|
4.4 Expression-Level Calculation for Two-Channel cDNA Microarrays, |
|
|
53 | (1) |
|
4.5 Expression-Level Calculation for Oligonucleotide Microarrays, |
|
|
53 | (5) |
|
4.5.1 The Average Difference, |
|
|
54 | (1) |
|
4.5.2 A Weighted Average Difference, |
|
|
54 | (1) |
|
4.5.3 Perfect Matches Only, |
|
|
55 | (1) |
|
4.5.4 Background Adjustment Approach, |
|
|
56 | (1) |
|
4.5.5 Model-Based Approach, |
|
|
56 | (1) |
|
4.5.6 Absent-Present Calls, |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (2) |
5 Preprocessing Microarray Data |
|
60 | (26) |
|
5.1 Logarithmic Transformation, |
|
|
60 | (2) |
|
5.2 Variance Stabilizing Transformations, |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (2) |
|
5.5 Intensity-Dependent Normalization, |
|
|
65 | (12) |
|
5.5.1 Smooth Function Normalization, |
|
|
68 | (1) |
|
5.5.2 Quantile Normalization, |
|
|
68 | (3) |
|
5.5.3 Stagewise Normalization, |
|
|
71 | (1) |
|
5.5.4 Normalization of Two-Channel Arrays, |
|
|
71 | (5) |
|
5.5.5 Spatial Normalization, |
|
|
76 | (1) |
|
5.5.6 Normalization of Oligonucleotide Arrays, |
|
|
76 | (1) |
|
5.6 Judging the Success of a Normalization, |
|
|
77 | (3) |
|
5.7 Outlier Identification, |
|
|
80 | (1) |
|
5.8 Nonresistant Rules for Outlier Identification, |
|
|
80 | (1) |
|
5.9 Resistant Rules for Outlier Identification, |
|
|
81 | (2) |
|
5.10 Assessing Replicate Array Quality, |
|
|
83 | (1) |
|
|
83 | (3) |
6 Summarization |
|
86 | (23) |
|
|
86 | (1) |
|
6.2 Technical Replicates, |
|
|
87 | (4) |
|
6.3 Biological Replicates, |
|
|
91 | (1) |
|
6.4 Experiments with Both Technical and Biological Replicates, |
|
|
91 | (4) |
|
6.5 Multiple Oligonucleotide Arrays, |
|
|
95 | (1) |
|
6.6 Estimating Fold Change in Two-Channel Experiments, |
|
|
96 | (1) |
|
6.7 Bayes Estimation of Fold Change, |
|
|
97 | (1) |
|
6.8 Estimating Fold Change Affymetrix Data, |
|
|
98 | (2) |
|
6.9 RMA Summarization of Multiple Oligonucleotide Arrays Revisited, |
|
|
100 | (5) |
|
6.10 Factor Analysis for Robust Microarray Summarization, FARMS, |
|
|
105 | (1) |
|
|
106 | (3) |
7 Two-Group Comparative Experiments |
|
109 | (57) |
|
7.1 Basics of Statistical Hypothesis Testing, |
|
|
111 | (1) |
|
|
112 | (2) |
|
7.3 The Two-Sample t-Test, |
|
|
114 | (2) |
|
|
116 | (2) |
|
|
118 | (1) |
|
7.6 The Mann-Whitney-Wilcoxon Rank Sum Test, |
|
|
119 | (2) |
|
7.7 Multiplicity Adjustment: The Familywise Error Rate, |
|
|
121 | (4) |
|
7.7.1 A Pragmatic Approach to the Issue of Multiplicity, |
|
|
122 | (1) |
|
7.7.2 Simple Multiplicity Adjustments, |
|
|
123 | (1) |
|
7.7.3 Sequential Multiplicity Adjustments, |
|
|
123 | (2) |
|
7.8 Multiplicity Adjustment: The False Discovery Rate, |
|
|
125 | (5) |
|
7.8.1 Benjamini and Hochberg Procedure, |
|
|
125 | (4) |
|
7.8.2 The Positive False Discovery Rate, |
|
|
129 | (1) |
|
7.9 Resampling-Based Multiple Testing Procedures, |
|
|
130 | (2) |
|
7.10 Small-Variance-Adjusted t-Tests and SAM, |
|
|
132 | (9) |
|
7.10.1 Modifying the t-Statistic, |
|
|
135 | (1) |
|
7.10.2 Assessing Significance with the SAM t Statistic, |
|
|
135 | (3) |
|
7.10.3 Strategies for Using SAM, |
|
|
138 | (1) |
|
7.10.4 An Empirical Bayes Framework, |
|
|
139 | (1) |
|
7.10.5 Understanding the SAM Adjustment, |
|
|
139 | (2) |
|
|
141 | (4) |
|
7.12 Borrowing Strength Across Genes, |
|
|
145 | (4) |
|
|
147 | (1) |
|
|
148 | (1) |
|
7.13 Two-Channel Experiments, |
|
|
149 | (3) |
|
7.13.1 The Paired Sample t Test and SAM, |
|
|
150 | (1) |
|
7.13.2 Borrowing Strength Via Hierarchical Modeling, |
|
|
150 | (2) |
|
|
152 | (8) |
|
7.14.1 Filtering Based on Summarized Data, |
|
|
152 | (4) |
|
7.14.2 Filtering Based on Probe-Level Data, |
|
|
156 | (4) |
|
|
160 | (1) |
|
|
161 | (5) |
8 Model-Based Inference and Experimental Design Considerations |
|
166 | (34) |
|
|
167 | (1) |
|
8.2 The Basic Linear Model, |
|
|
168 | (3) |
|
8.3 Fitting the Model in Two Stages, |
|
|
171 | (1) |
|
8.4 Multichannel Experiments, |
|
|
171 | (1) |
|
8.5 Experimental Design Considerations, |
|
|
172 | (5) |
|
8.5.1 Comparing Two Varieties with Two-Channel Microarrays, |
|
|
172 | (2) |
|
8.5.2 Comparing Multiple Varieties with Two-Channel Microarrays, |
|
|
174 | (2) |
|
8.5.3 Single-Channel Microarray Experiments, |
|
|
176 | (1) |
|
8.6 Miscellaneous Issues, |
|
|
177 | (1) |
|
8.7 Model-Based Analysis of Affymetrix Arrays, |
|
|
177 | (18) |
|
|
177 | (2) |
|
8.7.2 Linear Models for Microarray Data (Limma), |
|
|
179 | (5) |
|
8.7.3 A Joint Model for Gene Expression and Response, |
|
|
184 | (3) |
|
8.7.4 Analysis of Dose-Response Microarray Experiments, |
|
|
187 | (4) |
|
8.7.5 Analysis of Time Course Data, |
|
|
191 | (4) |
|
|
195 | (1) |
|
|
196 | (4) |
9 Analysis of Gene Sets |
|
200 | (10) |
|
9.1 Methods for Identifying Enriched Gene Sets, |
|
|
201 | (4) |
|
9.1.1 MLP and Fisher's Test, |
|
|
202 | (3) |
|
9.1.2 GSEA and the Kolmogorov-Smirnov Test, |
|
|
205 | (1) |
|
9.2 ORA and Fisher'S Exact Test, |
|
|
205 | (1) |
|
9.3 Interpretation of Results, |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
206 | (4) |
10 Pattern Discovery |
|
210 | (40) |
|
10.1 Initial Considerations, |
|
|
210 | (2) |
|
|
212 | (17) |
|
10.2.1 Dissimilarity Measures and Similarity Measures, |
|
|
213 | (2) |
|
10.2.2 Guilt by Association, |
|
|
215 | (1) |
|
10.2.3 Hierarchical Clustering, |
|
|
216 | (6) |
|
10.2.4 Partitioning Methods, |
|
|
222 | (4) |
|
10.2.5 Model-Based Clustering, |
|
|
226 | (1) |
|
10.2.6 Chinese Restaurant Clustering, |
|
|
227 | (1) |
|
10.2.7 Ensemble Methods for Clustering Samples, |
|
|
228 | (1) |
|
|
229 | (1) |
|
10.3 Seeking Patterns Visually, |
|
|
229 | (13) |
|
10.3.1 Principal Components Analysis, |
|
|
230 | (4) |
|
|
234 | (3) |
|
|
237 | (1) |
|
10.3.4 Spectral Map Analysis, |
|
|
237 | (2) |
|
10.3.5 Multidimensional Scaling, |
|
|
239 | (1) |
|
10.3.6 Projection Pursuit, |
|
|
239 | (2) |
|
10.3.7 Data Visualization with the Grand Tour and Projection Pursuit, |
|
|
241 | (1) |
|
|
242 | (5) |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
244 | (3) |
|
|
247 | (1) |
|
|
247 | (3) |
11 Class Prediction |
|
250 | (40) |
|
11.1 Initial Considerations, |
|
|
251 | (7) |
|
11.1.1 Misclassification Rates, |
|
|
251 | (1) |
|
11.1.2 Reducing the Number of Classifiers, |
|
|
252 | (6) |
|
11.2 Linear Discriminant Analysis, |
|
|
258 | (3) |
|
11.3 Extensions of Fisher's LDA, |
|
|
261 | (2) |
|
|
263 | (1) |
|
|
264 | (1) |
|
11.6 Recursive Partitioning, |
|
|
265 | (5) |
|
11.6.1 Classification Trees, |
|
|
267 | (2) |
|
11.6.2 Activity Region Finding, |
|
|
269 | (1) |
|
|
270 | (3) |
|
|
271 | (1) |
|
11.7.2 Enriched Random Forest, |
|
|
272 | (1) |
|
11.8 Enriched Ensemble Classifiers, |
|
|
273 | (1) |
|
|
273 | (3) |
|
11.10 Support Vector Machines, |
|
|
276 | (1) |
|
11.11 Generalized Enriched Methods, |
|
|
277 | (8) |
|
11.11.1 Enriched Principal Components Analysis and Biplots, |
|
|
279 | (2) |
|
11.11.2 Enriched Penalized Methods: Lasso, SVM, P-SVM, |
|
|
281 | (2) |
|
11.11.3 Enriched Partial Least Squares (PLS), |
|
|
283 | (2) |
|
11.12 Integration of Genome Information, |
|
|
285 | (1) |
|
11.12.1 Integration of Gene Expression Data and Molecular Structure Data, |
|
|
285 | (1) |
|
11.12.2 Pathway Inference, |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (4) |
12 Protein Arrays |
|
290 | (8) |
|
|
290 | (1) |
|
12.2 Protein Array Experiments, |
|
|
291 | (1) |
|
12.3 Special Issues with Protein Arrays, |
|
|
292 | (1) |
|
|
293 | (1) |
|
12.5 Using Antibody Antigen Arrays to Measure Protein Concentrations, |
|
|
294 | (4) |
References |
|
298 | (15) |
Index |
|
313 | |