Muutke küpsiste eelistusi

E-raamat: Explorations in the Mathematics of Data Science: The Inaugural Volume of the Center for Approximation and Mathematical Data Analytics

Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 135,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This edited volume reports on the recent activities of the new Center for Approximation and Mathematical Data Analytics (CAMDA) at Texas A&M University. Chapters are based on talks from CAMDA’s inaugural conference – held in May 2023 – and its seminar series, as well as work performed by members of the Center. They showcase the interdisciplinary nature of data science, emphasizing its mathematical and theoretical foundations, especially those rooted in approximation theory.

Preface.- S-Procedure Relaxation: a Case of Exactness Involving
Chebyshev Centers.- Neural networks: deep, shallow, or in between?.-
Qualitative neural network approximation over R and C.- Linearly Embedding
Sparse Vectors from l2 to l1 via Deterministic Dimension-Reducing Maps.-
Ridge Function Machines.- Learning Collective Behaviors from Observation.-
Provably Accelerating Ill-Conditioned Low-Rank Estimation via Scaled Gradient
Descent, Even with Overparameterization.- CLAIRE: Scalable GPU-Accelerated
Algorithms for Diffeomorphic Image Registration in 3D.- A genomic tree based
sparse solver.- A qualitative difference between gradient flows of convex
functions in finite- and infinite-dimensional Hilbert spaces.